7.6: Digital Controller Design by Emulation

7.6.1 Emulation of Analog Controller

The controller for a sampled-data control system can be designed by emulating (i.e., approximating) an available analog controller design. Controller emulation aims to obtain an approximate digital controller, \(\left(K \left(z \right) \right) \), whose response matches that of the analog controller, \(\left(K \left(s \right) \right) \). Popular controller emulation methods include:

Impulse Invariance. The impulse invariance method aims to match the impulse response of the analog controller. Assume that the analog controller has a form: \(H(s) = \sum_{k=1}^{n} \frac{A_{k}}{s-s_{k}} \). Then a digital controller is obtained as: \(H(z) = T \sum_{k=1}^{n} \frac{A_{k}}{1-p_{k}z^{-1}} \), \(p_{k} = e^{s_{k}T} \).

Pole–Zero Matching. In pole–zero matching, both the plant poles and zeros are mapped to their equivalent locations in the \(z \)-plane using: \(z_{i} = e^{s_{i}T} \). If the analog transfer function has \(n \) poles and \(m \) finite zeros, to be matched, then another \(n-m \) zeros are added at \(z=1 \). Additionally, the dc gain of the digital controller is matched to that of the analog controller.

Zero-Order Hold (ZOH). The ZOH method assumes the presence of a ZOH at the input. The method is ineffective if the analog controller has poles at the origin (as in the case of PI and PID controllers).

First-Order Hold (FOH). The FOH method assumes a piece-wise linear input to the controller.

Bilinear Transform (BLT). The BLT method uses Tustin’s approximation \(\left(\frac{1+Ts/2}{1-Ts/2} \right) \) to emulate an analog controller. The BLT method is effective with a high sampling frequency. Using the BLT, an equivalent digital controller is obtained as: \(K(z) = K(s) \left| s = \frac{2}{T} \frac{z-1}{z+1} \right. \).

The ‘c2d’ command in the MATLAB Control Systems Toolbox allows controller emulation method to be specified. The

https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Book%3A_Introduction_to_Control_Systems_(Iq…

Updated: Fri, 03 Jul 2020 05:03:34 GMT
Powered by
default method is ZOH.

Example \(\PageIndex{1}\)

Let \(G(s) = \frac{10}{s(s+2)(s+5)}\); \(T = 0.2s\); then, the pulse transfer function is obtained as:
\[
G(z) = \frac{0.0095(z+0.18)(z+2.68)}{(z-1)(z-0.67)(z-0.37)}
\]

A lead-lag controller for this example was designed earlier:
\[
K(s) = 25\left(\frac{s+2}{s+24}\right)\left(\frac{s+0.05}{s+0.004}\right)
\]

We use MATLAB Control System Toolbox 'c2d' commands to obtain discrete approximations of the controller using the following methods:

ZOH:
\[
K(z) = \frac{25(z-0.99)(z-0.925)}{(z-0.999)(z-0.008)}
\]

FOH:
\[
K(z) = \frac{6.86(z-0.99)(z-0.7)}{(z-0.999)(z-0.008)}
\]

BLT:
\[
K(z) = \frac{8.86(z-0.99)(z-0.667)}{(z-0.999)(z-0.412)}
\]

Impulse-invariance:
\[
K(z) = \frac{-109.77z(z-0.999)}{(z-0.999)(z-0.008)}
\]

Pole-zero matching:
\[
K(z) = \frac{6.3(z-0.99)(z-0.67)}{(z-0.999)(z-0.008)}
\]

Least-squares:
\[
K(z) = \frac{5.74(z-0.99)(z-0.542)}{(z-0.999)(z-0.376)}
\]

An analysis of the closed-loop systems shows that all except the impulse invariance approximation are stable with damping in the range of \(\zeta \in [0.72, 0.81]\). The closed-loop responses are compared in Figure 7.8.

As seen from the figure and otherwise, the BLT method generally provides the best approximation of an analog controller.

Figure 7.8: Step response comparison for analog controller emulation methods (Example 7.22).

7.6.2 Emulation of Analog PID Controller

An analog PID controller with input \(e(t)\) and output \(u(t)\) is described as:

\[
u(t) = k_p e(t) + k_d \frac{de(t)}{dt} + k_i \int e(t) dt.
\]

An equivalent digital PID controller can be obtained by employing a forward Euler approximation of the derivative term:

\[
\frac{de(t)}{dt} \approx \frac{1}{T}(e_{k+1} - e_k).
\]

The resulting \(z\)-domain transfer functions for the PID controller are given as:

\[
K(z) = k_p + k_d(z-1) + k_i \frac{T}{z-1}
\]

Further, let \(v_{-1}(k)\) denote the integrator output; then, the digital PID controller is implemented using the following
update rules:
\[u_k = k_{pe_{k-1}} + \frac{1}{T}(e_k - e_{k-1}) + k_{iv_k} \]
\[v_k = v_{k-1} + Te_{k-1} \]

Example \(\PageIndex{2} \)

Let \(G(s) = \frac{10}{s(s+2)(s+5)}, \ T = 0.2s \); then, the pulse transfer function is obtained as:
\[G(z) = \frac{0.0095(z+0.18)(z+2.68)}{(z-1)(z-0.67)(z-0.37)} \]

A PID controller for this example was designed earlier as:
\[K_{PID}(s) = \frac{1.2(s+0.05)(s+2)}{s} \]

An approximate digital controller is obtained as:
\[K_{PID}(z) = 2.46 + 1.2 \left(\frac{z-1}{T} \right) + 0.12 \left(\frac{T}{z-1} \right) \]

The step response of the closed-loop system for analog and digital PID controllers is shown in Figure 7.9. The discrete PID controller with forward Euler approximation of derivative emulates the analog controller well.

Figure 7.9: Comparison of the step response for analog and digital PID controllers.