15.4: Hybrid Encryption

As a rule, public-key encryption schemes are much more computationally expensive than symmetric-key schemes. Taking ElGamal as a representative example, computing g^b in a cryptographically secure cyclic group is considerably more expensive than one evaluation of AES. As the plaintext data increases in length, the difference in cost between public-key and symmetric-key techniques only gets worse.

A clever way to minimize the cost of public-key cryptography is to use a method called hybrid encryption. The idea is to use the expensive public-key scheme to encrypt a temporary key for a symmetric-key scheme. Then use the temporary key to (cheaply) encrypt the large plaintext data.

To decrypt, one can use the decryption key of the public-key scheme to obtain the temporary key. Then the temporary key can be used to decrypt the main payload.

Construction 15.8: Hybrid Enc

Let Σ_{pub} be a public-key encryption scheme, and let Σ_{sym} be a symmetric-key encryption scheme, where $\Sigma_{sym} \subseteq \Sigma_{pub}$ — that is, the public-key scheme is capable of encrypting keys of the symmetric-key scheme.

Then we define Σ_{hyb} to be the following construction:
Importantly, the message space of the hybrid encryption scheme is the message space of the symmetric-key scheme (think of this as involving very long plaintexts), but encryption and decryption involves expensive public-key operations only on a small temporary key (think of this as a very short string).

The correctness of the scheme can be verified via:

\[
\text{Dec}(sk, \text{Enc}(pk, m)) = \text{Dec}(sk, \alpha(\text{Enc}(pk, tk), \text{Enc}(tk, m))) \\
= \text{Dec}(sk, \text{Dec}(sk, \text{Enc}(pk, tk)), \text{Enc}(tk, m)) \\
= \text{Dec}(tk, \text{Enc}(tk, m)) \\
= m.
\]

To show that hybrid encryption is a valid way to encrypt data, we prove that it provides CPA security, when its two components have appropriate security properties:

Claim 15.9

If \(\Sigma_{\text{sym}} \) is a one-time-secret symmetric-key encryption scheme and \(\Sigma_{\text{pub}} \) is a CPA-secure public-key encryption scheme, then the hybrid scheme \(\Sigma_{\text{hyb}} \) ([Construction 15.8](https://eng.libretexts.org/Under_Construction/Book%3A_The_Joy_of_Cryptography_(Rosulek)/Chapter_15%3A_Public-Key_…)) is also a CPA-secure public-key encryption scheme.

Note that \(\Sigma_{\text{sym}} \) does not even need to be CPA-secure. Intuitively, one-time secrecy suffices because each temporary key \(tk \) is used only once to encrypt just a single plaintext.

Proof

As usual, our goal is to show that \(\mathcal{L}_{\Sigma_{\text{hyb}}}^{\text{pk-cpa-L}} \equiv \mathcal{L}_{\Sigma_{\text{hyb}}}^{\text{hybpk-cpa-R}} \), which we do in a standard sequence of hybrids:

The starting point is \(\mathcal{L}_{\text{pk-cpa-L}} \), shown here with the details of \(\Sigma_{\text{hyb}} \) filled in.

Our only goal is to somehow replace \(m_L \) with \(m_R \). Since \(m_L \) is only used as a plaintext for \(\Sigma_{\text{sym}} \), it is tempting to simply apply the one-time-secrecy property of \(\Sigma_{\text{sym}} \) to argue that \(m_L \) can be replaced with \(m_R \). Unfortunately, this cannot work because the key used for that ciphertext is \(tk \), which is used elsewhere. In particular, it is used as an argument to \(\Sigma_{\text{pub. Enc}} \).
However, using \(tk \) as the plaintext argument to \(\Sigma_{\text{pub}}.\text{Enc} \) should hide \(tk \) to the calling program, if \(\Sigma_{\text{pub}} \) is CPA-secure. That is, the \(\Sigma_{\text{pub}} \) encryption of \(tk \) should look like a \(\Sigma_{\text{pub}} \) encryption of some unrelated dummy value. More formally, we can factor out the call to \(\Sigma_{\text{pub}}.\text{Enc} \) in terms of the \(\mathcal{L}_{\text{pk-cpa-L}} \) library, as follows:

Here we have changed the variable names of the arguments of \(\text{CHALLENGE}' \) to avoid unnecessary confusion. Note also that \(\text{CHALLENGE} \) now chooses two temporary keys — one which is actually used to encrypt \(m_L \) and one which is not used anywhere. This is because syntactically we must have two arguments to pass into \(\text{CHALLENGE}' \).

Now imagine replacing \(\mathcal{L}_{\text{pk-cpa-L}} \) with \(\mathcal{L}_{\text{k-cpa-R}} \) and then inlining subroutine calls. The result is:

At this point, it does now work to factor out the call to \(\Sigma_{\text{sym}}.\text{Enc} \) in terms of the \(\mathcal{L}_{\text{ots-L}} \) library. This is because the key \(tk \) is not used anywhere else in the library. The result of factoring out in this way is:

At this point, we can replace \(\mathcal{L}_{\text{ots-L}} \) with \(\mathcal{L}_{\text{ots-R}} \). After this change the \(\Sigma_{\text{sym}} \)-ciphertext encrypts \(m_R \) instead of \(m_L \). This is the “half-way point” of the proof, and the rest of the steps are a mirror image of what has come before. In summary: we inline \(\mathcal{L}_{\text{ots-R}} \), then we apply CPA security to replace the \(\Sigma_{\text{pub}} \)-encryption of \(tk' \) with \(tk \). The result is exactly \(\mathcal{L}_{\text{pk-cpa-R}} \), as
desired.