Skip to main content
Engineering LibreTexts

12.3.1: Dynamic relations

  • Page ID
    78411
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The dynamic model governing the movement of the aircraft is based on two fundamental theorems of the classical mechanics: the theorem of the quantity of movement and the theorem of the kinetic momentum:

    Theorem 12.1 Quantity of movement

    The theorem of quantity of movement establishes that:

    \[\vec{F} = \dfrac{d(m \vec{V})}{dt},\label{eq12.3.1.1} \]

    where \(\vec{F}\) is the resulting of the external forces, \(\vec{V}\) is the absolute velocity of the aircraft (respect to a inertial reference frame), \(m\) is the mass of the aircraft, and \(t\) is the time.

    Remark 12.3

    For a conventional aircraft holds that the variation of its mass with respect to time is sufficiently slow so that the term \(\dot{m} \vec{V}\) Equation \ref{eq12.3.1.1} could be neglected.

    Theorem 12.2 Kinematic momentum

    The theorem of the kinematic momentum establishes that:

    \[\vec{G} = \dfrac{d\vec{h}}{dt}, \nonumber \]

    \[\vec{h} = I \vec{\omega}, \nonumber \]

    where \(\vec{G}\) is the resulting of the external momentum around the center of gravity of the aircraft, \(\vec{h}\) is the absolute kinematic momentum of the aircraft, \(I\) is the tensor of inertia, and \(\vec{\omega}\) is the absolute angular velocity of the aircraft.

    Definition 12.8 Tensor of Inertia

    The tensor of inertia is defined as:

    \[I = \begin{bmatrix} I_x & -I_{xy} & -J_{xz} \\ -J_{xy} & I_y & -J_{yz} \\ -J_{xz} & -J_{yz} & I_z \end{bmatrix}. \nonumber \]

    where \(I_x , I_y, I_z\) are the inertial momentums around the three axes of the reference system, and \(J_{xy}, J_{xz}, J_{yz}\) are the corresponding inertia products.

    The resulting equations from both theorems can be projected in any reference system. In particular, projecting them into a body-axes reference frame (also to a wind-axes reference frame) have important advantages.

    Theorem 12.3 Field of velocities

    Given a inertial reference frame denoted by \(F_0\) and a non-inertial reference frame \(F_1\) whose related angular velocity is given by \(\vec{\omega}_{01}\), and given also a generic vector \(\vec{A}\), it holds:

    \[\{ \dfrac{\partial \vec{A}}{\partial t} \}_1 = \{ \dfrac{\partial \vec{A}}{\partial t} \}_0 + \vec{\omega}_{01} \wedge \vec{A}_1 \nonumber \]

    The three components expressed in a body-axes reference frame of the total force, the total momentum, the absolute velocity, and the absolute angular velocity are denoted by:

    \[\vec{F} = (F_x, F_y, F_z)^T, \nonumber \]

    \[\vec{G} = (L, M, N)^T, \nonumber \]

    \[\vec{V} = (u, v, w)^T, \nonumber \]

    \[\vec{\omega} = (p, q, r)^T. \nonumber \]

    Therefore, the equations governing the motion of the aircraft are:

    \[F_x = m(\dot{u} - rv + qw),\label{eq12.3.1.10} \]

    \[F_y = m(\dot{v} + ru - pw),\label{eq12.3.1.11} \]

    \[F_z = m(\dot{w} - qu + pv),\label{eq12.3.1.12} \]

    \[L = I_x \dot{p} - J_{xz} \dot{r} + (I_z - I_y) qr - J_{xz} pq,\label{eq12.3.1.13} \]

    \[M = I_y \dot{q} - (I_z - I_x) pr - J_{xz} (p^2 - r^2),\label{eq12.3.1.14} \]

    \[N = I_z \dot{r} - J_{xz} \dot{p} + (I_x - I_y) pq - J_{xz} qr,\label{eq12.3.1.15} \]

    System \ref{eq12.3.1.10}\) - \(\ref{eq12.3.1.15} is referred to as Euler equations of the movement of an aircraft.


    This page titled 12.3.1: Dynamic relations is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by Manuel Soler Arnedo via source content that was edited to the style and standards of the LibreTexts platform.