Skip to main content
Engineering LibreTexts

12.4.1: Dynamic relations

  • Page ID
    78414
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Therefore, the dynamic equations governing the translational motion of the aircraft are uncoupled:

    \[-mg \sin \gamma + F_{T_x} + F_{A_x} = m (\dot{u} - rv + qw),\]

    \[mg \cos \gamma \sin \mu + F_{T_y} + F_{A_y} = m (\dot{v} + ru - pw),\]

    \[mg \cos \gamma \cos \mu + F_{T_z} + F_{A_z} = m (\dot{w} - qu + pv),\]

    The aerodynamic forces, expressed in wind axes, are as follows:

    \[(\vec{F}_A)_w = \begin{bmatrix} -D \\ -Q \\ -L \end{bmatrix},\]

    where \(D\) is the aerodynamic drag, \(Q\) is the aerodynamic lateral force, and \(L\) is the aerodynamic lift.

    The propulsive forces, expressed in wind axes, are as follows:

    \[(\vec{F}_T)_w = \begin{bmatrix} T \cos \epsilon \cos v \\ T \cos \epsilon \sin v \\ -T \sin \epsilon \end{bmatrix},\]

    where \(T\) is the thrust, \(\epsilon\) is the thrust angle of attack, and \(ν\) is the thrust sideslip.

    Theorem 12.6 Fixed engines

    We assume the aircraft is a conventional jet airplane with fixed engines. Almost all existing aircrafts worldwide have their engines rigidly attached to their structure.


    12.4.1: Dynamic relations is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by Manuel Soler Arnedo via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?