Skip to main content
Engineering LibreTexts

11.3.2: Speed of Sound in Ideal and Perfect Gases

  • Page ID
    792
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The speed of sound can be obtained easily for the equation of state for an ideal gas (also perfect gas as a sub set) because of a simple mathematical expression. The pressure for an ideal gas can be expressed as a simple function of density, \(\rho\), and a function "molecular structure'' or ratio of specific heats, \(k\) namely

    \[ P= constant\times \rho^{k}
    \label{gd:sd:eq:iserhoToP}
    \]

    and hence

    \[ \label{gd:sd:eq:idealGas1}
    c = \sqrt{\dfrac{\partial P}{\partial \rho}}
    = k \times constant \times \rho^{k-1} =k \times
    \dfrac{\overbrace{ constant \times \rho^k}^{P} }{ \rho}
    = k \times \dfrac{P }{\rho }
    \] Remember that \(P / \rho \) is defined for an ideal gas as \(RT\), and equation (12) can be written as

    Ideal Gas Speed Sound

    \[
    \label{gd:sd:eq:sound}
    c = \sqrt{ k\, R\, T}
    \]

    Example 11.2

    Calculate the speed of sound in water vapor at \(20 [bar]\) and \(350^{\circ}C\), (a) utilizes the steam table, and (b) assuming ideal gas.

    Solution 11.2

    The solution can be estimated by using the data from steam table
    \[
    c \sim \sqrt{ \dfrac{\Delta P}{ \Delta \rho} }_{s=constant}
    \]
    At \(20[bar]\) and \(350^{\circ}C\): s = 6.9563 \(\left[ \dfrac{kJ }{ K\, kg}\right]\) \(\rho \) = 6.61376 \(\left[ \dfrac{kg }{ m^3} \right]\)
    At \(18[bar]\) and \(350^{\circ}C\): s = 7.0100 \(\left[\dfrac{ kJ }{ K\, kg}\right]\) \(\rho \) = 6.46956 \(\left[ \dfrac{ kg }{ m^3}\right]\)
    At \(18[bar]\) and \(300^{\circ}C \): s = 6.8226 \(\left[\dfrac{ kJ }{ K\, kg}\right]\) \(\rho \) = 7.13216 \(\left[ \dfrac{kg }{ m^3} \right] \)
    After interpretation of the temperature:
    At \(18[bar]\) and \(335.7^{\circ}C \): s \(\sim\) 6.9563 \(\left[\dfrac{ kJ }{ K\, kg} \right]\) \(\rho \sim\) 6.94199 \(\left[ \dfrac{kg }{ m^3} \right]\)
    and substituting into the equation yields
    \[
    c = \sqrt{ 200000 \over 0.32823} = 780.5 \left[ m \over
    sec \right]
    \]
    for ideal gas assumption (data taken from Van Wylen and Sontag, Classical Thermodynamics, table A 8.)
    \[
    c = \sqrt{k\,R\,T} \sim \sqrt{ 1.327 \times 461 \times
    (350 + 273)} \sim
    771.5 \left[ \dfrac{m }{ sec} \right]
    \]
    Note that a better approximation can be done with a steam table, and it \(\cdots\),

    Contributors and Attributions

    • Dr. Genick Bar-Meir. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or later or Potto license.


    This page titled 11.3.2: Speed of Sound in Ideal and Perfect Gases is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.


    This page titled 11.3.2: Speed of Sound in Ideal and Perfect Gases is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Genick Bar-Meir via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?