Skip to main content
Engineering LibreTexts

12.6: d'Alembert's Paradox

  • Page ID
    859
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In ideal inviscid incompressible flows, the movement of body does not encounter any resistance. This result is known as d'Alembert's Paradox, and this paradox is examined here. Supposed that a two–dimensional diamond–shape body is stationed in a supersonic flow as shown in Figure 12.27.

    Fig. 12.27 A simplified diamond shape to illustrate the supersonic d'Alembert's Paradox.

    Again, it is assumed that the fluid is inviscid. The net force in flow direction, the drag, is

    \[ D = 2 \left( \dfrac{w }{ 2} \, (P_2 - P_4)\right) = w \, (P_2 - P_4) \label{pm:eq:dragG} \]

    It can be observed that only the area that "seems'' to be by the flow was used in expressing equation (38). The relation between \(P_2\) and \(P_4\) is such that the flow depends on the upstream Mach number, \(M_1\), and the specific heat, \(k\). Regardless in the equation of the state of the gas, the pressure at zone 2, \(P_2\), is larger than the pressure at zone 4, \(P_4\). Thus, there is always drag when the flow is supersonic which depends on the upstream Mach number, \(M_1\), specific heat, \(k\), and the "visible'' area of the object. This drag is known in the literature as (shock) wave drag.

    Contributors and Attributions

    • Dr. Genick Bar-Meir. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or later or Potto license.


    This page titled 12.6: d'Alembert's Paradox is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.


    This page titled 12.6: d'Alembert's Paradox is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Genick Bar-Meir via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.