Skip to main content
Engineering LibreTexts

11.7.12: More Examples of Fanno Flow

  • Page ID
    830
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Example

    To demonstrate the utility in Figure ?? consider the following example. Find the mass flow rate for \(f=0.05\), \(L= 4[m]\), \(D=0.02[m]\) and pressure ratio \(P_2 / P_1 = 0.1, 0.3, 0.5, 0.8\). The stagnation conditions at the entrance are \(300 K\) and \(3[bar]\) air.

    Solution

    First calculate the dimensionless resistance, \(\dfrac{4\,f\,L}{D}\).

    \[ \dfrac{4\,f\,L}{D} = {4 \times 0.05 \times 4 \over 0.02 } = 40
    \]

    From Figure ?? for \(P_2 / P_1 = 0.1\) \(M_1 \approx 0.13\) etc. or accurately by utilizing the program as in the following table.
    Fanno Flow Input: \(\dfrac{P_2}{P_1}\) and \(\dfrac{4\,f\,L}{D}\) k = 1.4
    \(M_1\) \(M_2\) \(\dfrac{4\,f\,L}{D}\) \(\left.\dfrac{4\,f\,L}{D}\right|_{1}\) \(\left.\dfrac{4\,f\,L}{D}\right|_{2}\) \(\dfrac{P_2}{P_1}\)
    0.12728 0.99677 0.99195 4.5910 0.98874 4.5393
    0.12420 0.99692 0.99233 4.7027 0.98928 4.6523
    0.11392 0.99741 0.99354 5.1196 0.99097 5.0733
    0.07975 0.99873 0.99683 7.2842 0.99556 7.2519

    Therefore, \(T\approx T_0\) and is the same for the pressure. Hence, the mass rate is a function of the Mach number. The Mach number is indeed a function of the pressure ratio but mass flow rate is a function of pressure ratio only through Mach number. The mass flow rate is
    \begin{align*}
    \dot{m} = P\, A\, M\, \sqrt{\dfrac{k }{ R\, T}} =
    300000\, \times \dfrac{\pi \times 0.02^2 }{ 4 } \times 0.127 \times
    \sqrt{\dfrac{ 1.4 }{ 287\, 300}} \approx 0.48
    \left(\dfrac{ kg }{ sec} \right)
    \end{align*}
    and for the rest
    \begin{align*}
    \dot{m} \left( \dfrac{\mathbf{P_2 }{ P_1}} = 0.3 \right)
    \sim 0.48 \times \dfrac{0.1242 }{ 0.1273}=0.468 \left(\dfrac{kg }{ sec}\right) \\
    \dot{m}\, \left( \dfrac{\mathbf{P_2 }{ P_1}} = 0.5 \right)
    \sim 0.48 \times \dfrac{0.1139 }{ 0.1273}=0.43 \left(\dfrac{kg }{ sec}\right) \\
    \dot{m} \, \left( \dfrac{ \mathbf{P_2 }{ P_1}} = 0.8 \right)
    \sim 0.48 \times \dfrac{0.07975 }{ 0.1273}=0.30 \left(\dfrac{kg }{ sec}\right)
    \end{align*}

    Contributors and Attributions

    • Dr. Genick Bar-Meir. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or later or Potto license.


    This page titled 11.7.12: More Examples of Fanno Flow is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.


    This page titled 11.7.12: More Examples of Fanno Flow is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Genick Bar-Meir via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.