Skip to main content
Engineering LibreTexts

14.2: C.2- 1st-order isotropic tensors

  • Page ID
    18092
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A 1st-order tensor is a vector. If the vector \(\vec{v}\) is isotropic, then under an infinitesimal rotation

    \[v_{i}^{\prime}=v_{j} C_{j i}=v_{j}\left(\delta_{j i}+r_{j i}\right)=v_{i}+v_{j} r_{j i}=v_{i}. \nonumber \]

    Therefore,

    \[v_{j} r_{j i}=0. \nonumber \]

    This represents three algebraic equations, one for each value of \(i\):

    \[\begin{array}{l}
    v_{1} r_{11}+v_{2} r_{21}+v_{3} r_{31}=0 \\
    v_{1} r_{12}+v_{2} r_{22}+v_{3} r_{32}=0 \\
    v_{1} r_{13}+v_{2} r_{23}+v_{3} r_{33}=0.
    \end{array}\label{eqn:1} \]

    Because \(\underset{\sim}{r}\) is antisymmetric, \(r_{11}\) = \(r_{22}\) = \(r_{33}\) = 0, removing one term from each equation.

    Now consider the first equation of Equation \(\ref{eqn:1}\):

    \[v_{2} r_{21}+v_{3} r_{31}=0.\label{eqn:2} \]

    Here is a crucial point: if \(\vec{v}\) is isotropic, then Equation \(\ref{eqn:1}\) must be true for all antisymmetric matrices \(\underset{\sim}{r}\), i.e., regardless of the values of \(r_{21}\) and \(r_{31}\). The only way this can be true is if \(v_2\) = 0 and \(v_3\) = 0. The same considerations applied to the second equation of Equation \(\ref{eqn:1}\) tell us that \(v_1\) must also be zero, hence the only isotropic 1st-order tensor is the trivial case

    \[\vec{v}=0. \nonumber \]


    This page titled 14.2: C.2- 1st-order isotropic tensors is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Bill Smyth via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.