# 6.5: The temperature (heat) equation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

We now resume our quest for a closed set of equations to describe the flow of a Newtonian fluid. We previously assumed mass and momentum conservation, resulting in the density equation and the Navier-Stokes momentum equation Equation 6.3.37. This collection of equations totals 4, but involves 5 unknowns: $$ρ$$, $$p$$, and the three components of $$\vec{u}$$.

We have now invoked a new assumption, namely energy conservation in the form of the 1st law of thermodynamics. This will allow us to add a new equation to the set. We first convert Equation 6.4.29 to Eulerian form. Two terms require conversion to volume integrals.

• We apply Cauchy’s lemma to the left -hand side, resulting in:

$\frac{D}{D t} \int_{V_{m}} \rho \mathscr{I} d V=\int_{V_{m}} \rho \frac{D \mathscr{I}}{D t} d V. \nonumber$

• The heat loss can be converted using the divergence theorem (section 4.2.3):

$\oint_{A_{m}} \vec{q} \cdot \hat{n} d A=\int_{V_{m}} \vec{\nabla} \cdot \vec{q} d V \nonumber$

We now have

$\int_{V_{m}}\left(\rho \frac{D \mathscr{I}}{D t}+\vec{\nabla} \cdot \vec{q}+p \vec{\nabla} \cdot \vec{u}-\rho \varepsilon\right) d V=0.\qquad . \nonumber$

We conclude as usual that the integrand must be zero everywhere, resulting in:

$\rho \frac{D \mathscr{I}}{D t}=k \nabla^{2} T-\vec{\nabla} \cdot \vec{q}_{r a d}-p \vec{\nabla} \cdot \vec{u}+\rho \varepsilon,\label{eqn:1}$

where Equation 6.4.27 has been used for the heat flux. We have gained a new equation, but have also introduced two new unknowns, the internal energy I and the temperature $$T$$. (Note that neither $$\varepsilon$$ nor $$\vec{q}_{rad}$$ counts as an unknown. The former is determined by the velocity field via the strain, $$\varepsilon = 2v e^2_{ij}$$, while we assume that the latter is specified independently.) This leaves us short two pieces of information.

## 6.5.1 Specific heat capacity

Our next goal is to eliminate internal energy from the problem by establishing a relationship between it and temperature. We will consider two possible approaches, each based on an assumption about the nature of the temperature changes that can be illustrated with a simple lab experiment.

#### Incompressible heating

Suppose that a fluid sample is contained in a closed, rigid vessel wherein it is slowly heated. We keep track of the heat input and the resulting temperature rise, and the two turn out to be approximately proportional:

$\left(\frac{\partial Q}{\partial T}\right)_{\upsilon}=C_{\upsilon}.\label{eqn:2}$

Here $$Q$$ is the specific heat content, i.e., heat content per unit mass, typically measured in joules per kilogram. The subscript $$\upsilon$$ on the partial derivative specifies that the specific volume $$\upsilon=\rho-1$$ is held fixed while $$Q$$ and $$T$$ are changing. $$C_\upsilon$$ is called the specific heat capacity at constant volume, and can be regarded as constant if the range of temperatures is not too wide. Typical values are

$c_{\upsilon}=\left\{\begin{array}{l} 42000 k_{k}-1_{k}-1, \text { in\ water } \\ 7000 k g^{-1} K^{-1}, \text {in\ air. } \end{array}\right.\label{eqn:3}$

Now because this incompressible fluid does not expand or contract, changes in internal energy are due entirely to changes in heat content, so

$\frac{D \mathscr{I}}{D t}=\frac{D Q}{D t}=C_{\upsilon} \frac{D T}{D t}. \nonumber$

We can now rewrite Equation $$\ref{eqn:1}$$ as

$\rho C_{v} \frac{D T}{D t}=k \nabla^{2} T-\vec{\nabla} \cdot \vec{q}_{r a d}+\rho \varepsilon,\label{eqn:4}$

keeping in mind that $$\vec{\nabla}\cdot\vec{u}=0$$. We have now succeeded in eliminating $$E$$, but the solution only works if $$\vec{\nabla}\cdot\vec{u}=0$$. Compressibility effects are not always negligible, especially in gases. To allow for that possibility, we imagine a slightly different experiment.

Isobaric heating

Suppose that we once again apply heat to a sample of fluid, but that the fluid is enclosed not in a rigid container but rather in a flexible membrane, like a balloon. As a result, the fluid can expand or contract freely, but the pressure does not change. (We assume that our balloon does not change altitude significantly, as would a weather balloon.) The process is therefore designated as isobaric.

For this process we define a new thermodynamic variable called the specific enthalpy, $$H$$. When a system changes slowly, the change in enthalpy is given by ∆H = ∆I +∆(pυ). In an isobaric process, this becomes $$\Delta H = \Delta \mathscr{I} + p\Delta \upsilon$$. For a given change in temperature, the change in enthalpy is given by

$\left(\frac{\partial H}{\partial T}\right)_{p}=C_{p}.\label{eqn:5$

$$C_p$$ is called the specific heat capacity at constant pressure, and is approximately constant for small temperature changes. Typical values are

$C_{p}=\left\{\begin{array}{l} 4200 \mathrm{J} \mathrm{kg}^{-1} \mathrm{K}^{-1}, \text {in water } \\ 1000 \mathrm{J} \mathrm{kg}^{-1} \mathrm{K}^{-1}, \text {in air. } \end{array}\right.\label{eqn:6}$

For a fluid parcel undergoing this isobaric change, the material derivative of the enthalpy is

$\frac{D H}{D t}=\frac{D \mathscr{I}}{D t}+p \frac{D \upsilon}{D t}=C_{p} \frac{D T}{D t}.\label{eqn:7}$

The material derivative of $$\upsilon$$ can be written as

$\frac{D \upsilon}{D t}=\frac{D \rho^{-1}}{D t}=-\rho^{-2} \frac{D \rho}{D t}=-\rho^{-2}(-\rho \vec{\nabla} \cdot \vec{u})=\rho^{-1} \vec{\nabla} \cdot \vec{u},\label{eqn:8}$

where mass conservation Equation 6.2.5 has been invoked. Multiplying Equation $$\ref{eqn:7}$$ by density and substituting Equation $$\ref{eqn:8}$$, we have

$\rho \frac{D H}{D t}=\rho \frac{D \mathscr{I}}{D t}+p \vec{\nabla} \cdot \vec{u}=\rho C_{p} \frac{D T}{D t} \nonumber$

which, together with Equation $$\ref{eqn:1}$$, gives

$\rho C_{p} \frac{D T}{D t}=k \nabla^{2} T-\vec{\nabla} \cdot \vec{q}_{r a d}+\rho \varepsilon.\label{eqn:9}$

## 6.5.2 The heat equation

The two temperature equations that hold in the incompressible and isobaric approximations, Equation $$\ref{eqn:4}$$ and $$\ref{eqn:9}$$, differ only in the choice of the specific heat capacity:

$\rho\left(C_{\upsilon} \text { or } C_{p}\right) \frac{D T}{D t}=k \nabla^{2} T-\vec{\nabla} \cdot \vec{q}_{r a d}+\rho \varepsilon. \nonumber$

Which approximation is better? In water, there is virtually no difference, because $$C_\upsilon$$ is nearly equal to $$C_p$$. In air, compressibility can be important, so the isobaric approximation is preferable. For geophysical applications, then, we choose the isobaric version:

$\rho C_{p} \frac{D T}{D t}=k \nabla^{2} T-\vec{\nabla} \cdot \vec{q}_{r a d}+\rho \varepsilon.\label{eqn:10}$

This is a generalization of the “heat equation’’ often discussed in physics texts: neglecting the radiation and dissipation terms, it becomes

$\frac{D T}{D t}=\kappa_{T} \nabla^{2} T.\label{eqn:11}$

Here, $$\kappa_T$$ is the thermal diffusivity, given by

$\kappa_{T}=\frac{k}{\rho C_{p}}=\left\{\begin{array}{ll} 1.4 \times 10^{-7} m^{2} s^{-1}, & \text {in water } \\ 1.9 \times 10^{-5} m^{2} s^{-1}, & \text {in air } \end{array}\right.\label{eqn:12}$

By using Equation $$\ref{eqn:10}$$ instead of $$\ref{eqn:1}$$ we are able to impose energy conservation while adding only one new unknown (instead of two), so at least we are no worse off in terms of closure. We now have 5 equations for 6 unknowns.

In the special case of incompressible fluid, the condition $$\vec{\nabla}\cdot\vec{u}=0$$ represents an additional equation and the set is closed (i.e., no more equations are needed). For the more general case, we need to make a further assumption about the nature of the fluid. This will take the form of an equation of state. Again, there is more than one possibility.

This page titled 6.5: The temperature (heat) equation is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Bill Smyth via source content that was edited to the style and standards of the LibreTexts platform.