# 13.1: Torque

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

Newton’s second law $$\vec{F}=m\vec{a}$$ has a rotational analogue. When a force $$\vec{F}$$ is exerted at a location $$\vec{r}$$ measured from some axis of rotation (e.g., the bolt in Figure $$\PageIndex{1}$$), then the cross product $$\vec{r}\times\vec{F}$$ is called the torque, $$\vec{T}$$. The cross product is defined in Equation 2.1.1, and is derived in detail in section D.3.1. For now, it is a vector perpendicular to both $$\vec{F}$$ and $$\vec{r}$$, with direction given by the right-hand rule. The magnitude is

$|\vec{r}\times\vec{F}|=|\vec{r}||\vec{F}||\sin\phi| \nonumber$

where $$\phi$$ is the angle between $$\vec{r}$$ and $$\vec{F}$$.

This page titled 13.1: Torque is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Bill Smyth via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.