Skip to main content
Engineering LibreTexts

18.2: G.2 Alternative derivation

  • Page ID
    18117
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Another way to derive Equation 18.1.7 is by rearranging Equation 18.1.6 as

    \[\rho_{0} \frac{D \vec{u}}{D t}=\rho^{\prime}\left(\vec{g}-\frac{D \vec{u}}{D t}\right)-\vec{\nabla} p^{*}+\mu \nabla^{2} \vec{u}+\mu \vec{\nabla}(\vec{\nabla} \cdot \vec{u}). \nonumber \]

    Now consider the first two terms in parentheses. If we assume that all accelerations are small compared with gravity, then the second term, \(D\vec{u}/Dt\), can be discarded. We then divide through by \(\rho_0\) to obtain the Boussinesq equation Equation 18.1.7 as before. Note that the smallness of accelerations compared with gravity is the same assumption that justifies neglecting the inertial terms in the baroclinic torque (section 7.4).


    18.2: G.2 Alternative derivation is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?