Skip to main content
Engineering LibreTexts

11.4.3: The Properties in the Adiabatic Nozzle

  • Page ID
    799
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    When there is no external work and heat transfer, the energy equation, reads

    \[ dh + U\, dU = 0
    \label{gd:iso:eq:energy}
    \]

    Differentiation of continuity equation, \(\rho\, A\, U = \dot{m} = constant\), and dividing by the continuity equation reads

    \[ {d\rho \over \rho} + { dA \over A} + {dU \over U} = 0
    \label{gd:iso:eq:mass}
    \]

    The thermodynamic relationship between the properties can be expressed as

    \[ T\,ds = dh - {dP \over \rho}
    \label{gd:iso:eq:thermo}
    \]

    For isentropic process \(ds quiv 0\) and combining equations (11.31) with (35) yields

    \[ {dP \over \rho} + U\, dU = 0
    \label{gd:iso:eq:thermo2}
    \] Differentiation of the equation state (perfect gas), \(P = \rho R T\), and dividing the results by the equation of state (\(\rho\, R\, T\)) yields

    \[ {dP \over P} = {d\rho \over \rho} + {dT \over T}
    \label{gd:iso:eq:stateDless}
    \] Obtaining an expression for \(dU/U\) from the mass balance equation (34) and using it in equation (36) reads

    \[ \dfrac{dP }{ \rho} - U^{2} \overbrace{\left[
    \dfrac{dA }{ A} + \dfrac{d\rho }{ \rho}
    \right]}^{\dfrac{dU }{ U} }
    = 0
    \label{gd:iso:eq:combine1}
    \] Rearranging equation (38) so that the density, \(\rho\), can be replaced by the static pressure, \(dP/\rho\) yields

    \[ \dfrac{dP }{ \rho} = U^{2}\, \left(
    {dA \over A} + {d\rho \over \rho}\, {dP \over dP}
    \right)
    = U^{2} \, \left( {dA \over A} +
    \overbrace{d\rho \over dP}^{\dfrac{ 1}{ c^2 }}
    {dP \over \rho}
    \right)
    \label{eq::varibleArea:combine2}
    \] Recalling that \(dP/d\rho = c^2\) and substitute the speed of sound into equation (??) to obtain

    \[ {dP \over \rho } \left[ 1 - \left(U \over c\right)^2 \right]
    = U^2 {dA \over A}
    \label{eq::varibleArea:combine3}
    \] Or in a dimensionless form

    \[ {dP \over \rho } \left( 1 -M^{2} \right)
    = U^2 {dA \over A}
    \label{gd:iso:eq:areaChangeVelocity}
    \] Equation (41) is a differential equation for the pressure as a function of the cross section area. It is convenient to rearrange equation (41) to obtain a variables separation form of

    \[ dP = {\rho\, U^{2} \over A} \; {dA \over 1 -M^2}
    \label{gd:iso:eq:areaChangeMach}
    \]

    Contributors and Attributions

    • Dr. Genick Bar-Meir. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or later or Potto license.


    This page titled 11.4.3: The Properties in the Adiabatic Nozzle is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.


    This page titled 11.4.3: The Properties in the Adiabatic Nozzle is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Genick Bar-Meir via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.