# 13.9.1: Horizontal Counter–Current Flow

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Up to this point, the discussion was focused on the vertical tubes. In horizontal tubes, there is an additional flow regime which is stratified. Horizontal flow is different from vertical flow from the stability issues. A heavier liquid layer can flow above a lighter liquid. This situation is unstable for large diameter but as in static (see section page ??) it can be considered stable for small diameters. A flow in a very narrow tube with heavy fluid above the lighter fluid should be considered as a separate issue.

Fig. 13.14 A flow map to explain the horizontal counter–current flow.

When the flow rate of both fluids is very small, the flow will be stratified counter–current flow. The flow will change to pulse flow when the heavy liquid flow rate increases. Further increase of the flow will result in a single phase flow regime. Thus, closing the window of this kind of flow. Thus, this increase terminates the two phase flow possibility. The flow map of the horizontal flow is different from the vertical flow and is shown in Figure 13.14. A flow in an angle of inclination is closer to vertical flow unless the angle of inclination is very small. The stratified counter flow has a lower pressure loss (for the liquid side). The change to pulse flow increases the pressure loss dramatically.

## Contributors and Attributions

• Dr. Genick Bar-Meir. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or later or Potto license.

This page titled 13.9.1: Horizontal Counter–Current Flow is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

This page titled 13.9.1: Horizontal Counter–Current Flow is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Genick Bar-Meir via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.