Skip to main content
Engineering LibreTexts

17.13: Appendix M- Experiments in Water Saturated Sand

  • Page ID
    35286
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    M.1 Pore pressures and cutting forces in 105 μm Sand

    Screen Shot 2020-08-31 at 6.49.10 PM.png
    Figure M-1: Dimensionless pore pressures, theory versus measurements.
    Screen Shot 2020-08-31 at 6.50.03 PM.png
    Figure M-2: Measured absolute pore pressures.
    Screen Shot 2020-08-31 at 6.50.58 PM.pngScreen Shot 2020-08-31 at 6.51.32 PM.png
    Figure M-3: The cutting forces Fand Fv, theory versus measurement.

    The cutting forces on the blade. Experiments in 105 μm sand, with α=30°, β=30o, φ=41o, δ=27o, ni=43.6%, nmax=51.6%, ki=0.000062 m/s, kmax=0.000170 m/s, hi=100 mm, hb=100 mm, w=0.2 m, z=0.6 m and a partial cavitating cutting process.

    Screen Shot 2020-08-31 at 6.56.30 PM.png
    Figure M-4: Dimensionless pore pressures, theory versus measurements.
    Screen Shot 2020-08-31 at 6.58.29 PM.png
    Figure M-5: Measured absolute pore pressures.
    Screen Shot 2020-08-31 at 6.59.27 PM.png
    Figure M-6: The cutting forces Fh and Fv, theory versus measurement.

    Screen Shot 2020-08-31 at 7.00.11 PM.png

    The cutting forces on the blade. Experiments in 105 μm sand, with α=45°, β=30o, φ=38o, δ=25o, ni=45.0%, nmax=51.6%, ki=0.000075 m/s, kmax=0.000170 m/s, hi=70 mm, hb=100 mm, w=0.2 m, z=0.6 m and a partial cavitating cutting process.

    Screen Shot 2020-08-31 at 7.14.28 PM.png
    Figure M-7: Dimensionless pore pressures, theory versus measurements.
    Screen Shot 2020-08-31 at 7.15.18 PM.png
    Figure M-8: Measured absolute pore pressures.
    Screen Shot 2020-08-31 at 7.22.23 PM.pngScreen Shot 2020-08-31 at 7.23.05 PM.png
    Figure M-9: The cutting forces Fh and Fv, theory versus measurement.

    The cutting forces on the blade. Experiments in 105 μm sand, with α=60°, β=30o, φ=36o, δ=24o, ni=44.3%, nmax=51.6%, ki=0.000067 m/s, kmax=0.000170 m/s, hi=58 mm, hb=100 mm, w=0.2 m, z=0.6 m and a partial cavitating cutting process.

    M.2 Pore Pressures in 200 μm Sand

    Screen Shot 2020-08-31 at 7.26.47 PM.png
    Figure M-10: α=30o, hi=33 mm, hb=100 mm.

    The dimensionless water pore pressures on the blade. Experiments in 200 μm sand, with α=30°, β=30o, φ=38o, δ=30o, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=33 mm, hb=100 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 7.29.36 PM.png
    Figure M-11: α=30o, hi=50 mm, hb=100 mm.

    The dimensionless water pore pressures on the blade. Experiments in 200 μm sand, with α=30°, β=29°, φ=38°, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=50 mm, hb=100 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process. 

    Screen Shot 2020-08-31 at 10.22.02 PM.png
    Figure M-12: α=30o, hi=100 mm, hb=100 mm.

    The dimensionless water pore pressures on the blade. Experiments in 200 μm sand, with α=30°, β=29°, φ=38°, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=100 mm, hb=100 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 10.32.42 PM.png
    Figure M-13: α=45o, hi=47 mm, hb=141 mm.

    The dimensionless water pore pressures on the blade. Experiments in 200 μm sand, with α=45°, β=25°, φ=38°, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=47 mm, hb=141 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 10.39.22 PM.png
    Figure M-14: α=45o, hi=70 mm, hb=141 mm.

    The dimensionless water pore pressures on the blade. Experiments in 200 μm sand, with α=45°, β=24oφ=38oδ=30oni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=70 mm, hb=141 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 10.40.46 PM.png
    Figure M-15: α=45o, hi=141 mm, hb=141 mm.

    The dimensionless water pore pressures on the blade. Experiments in 200 μm sand, with α=45°, β=25°, φ=38°, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=141 mm, hb=141 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 10.43.43 PM.png
    Figure M-16: α=60o, hi=30 mm, hb=173 mm.

    The dimensionless water pore pressures on the blade. Experiments in 200 μm sand, with α=60°, β=19oφ=38oδ=30oni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=30 mm, hb=173 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 10.45.55 PM.png
    Figure M-17: α=60o, hi=58 mm, hb=173 mm.

    The dimensionless water pore pressures on the blade. Experiments in 200 μm sand, with α=60°, β=19oφ=38oδ=30oni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=58 mm, hb=173 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 10.51.38 PM.png
    Figure M-18: α=60o, hi=87 mm, hb=173 mm.

    The dimensionless water pore pressures on the blade. Experiments in 200 μm sand, with α=60°, β=19°, φ=38°, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=87 mm, hb=173 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 10.53.01 PM.png
    Figure M-19: α=60o, hi=173 mm, hb=173 mm.

    The dimensionless water pore pressures on the blade. Experiments in 200 μm sand, with α=60°, β=20°, φ=38o, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=173 mm, hb=173 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    M.3 Cutting Forces in 200 μm Sand

    Screen Shot 2020-08-31 at 11.05.03 PM.png
    Figure M-20: α=30°, hi=33 mm, hb=100 mm.

    Screen Shot 2020-08-31 at 11.05.57 PM.png

    The cutting forces Fh and Fv on the blade. Experiments in 200 μm sand, with α=30°, β=30°, φ=38°, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=33 mm, hb=100 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 11.08.05 PM.png
    Figure M-21: α=30°, hi=50 mm, hb=100 mm.

    Screen Shot 2020-08-31 at 11.21.55 PM.png

    The cutting forces Fh and Fon the blade. Experiments in 200 μm sand, with α=30°, β=30°, φ=38°, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=50 mm, hb=100 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 11.23.40 PM.png
    Figure M-22: α=30°, hi=100 mm, hb=100 mm.

    Screen Shot 2020-08-31 at 11.24.17 PM.png

    The cutting forces Fh and Fv on the blade. Experiments in 200 μm sand, with α=30°, β=30oφ=38oδ=30oni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=100 mm, hb=100 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 11.26.19 PM.png
    Figure M-23: α=45°, hi=47 mm, hb=141 mm.

    Screen Shot 2020-08-31 at 11.27.06 PM.png

    The cutting forces Fh and Fv on the blade. Experiments in 200 μm sand, with α=45°, β=30o, φ=38°, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=47 mm, hb=141 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 11.30.32 PM.pngScreen Shot 2020-08-31 at 11.31.10 PM.png
    Figure M-24: α=45°, hi=70 mm, hb=141 mm.

    The cutting forces Fh and Fon the blade. Experiments in 200 μm sand, with α=45°, β=30°, φ=38°, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=70 mm, hb=141 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 11.33.27 PM.png
    Figure M-25: α=45°, hi=141 mm, hb=141 mm.

    Screen Shot 2020-08-31 at 11.34.09 PM.png

    The cutting forces Fh and Fv on the blade. Experiments in 200 μm sand, with α=45°, β=30°, φ=38°, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=141 mm, hb=141 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 11.36.34 PM.pngScreen Shot 2020-08-31 at 11.37.14 PM.png
    Figure M-26: α=60°, hi=58 mm, hb=173 mm.

    The cutting forces Fh and Fon the blade. Experiments in 200 μm sand, with α=45°, β=30oφ=38oδ=30oni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=58 mm, hb=173 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-08-31 at 11.43.39 PM.pngScreen Shot 2020-08-31 at 11.44.16 PM.png
    Figure M-27: α=60°, hi=87 mm, hb=173 mm.

    The cutting forces Fh and Fv on the blade. Experiments in 200 μm sand, with α=45°, β=30°, φ=38°, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=87 mm, hb=173 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.

    Screen Shot 2020-09-01 at 3.44.25 PM.pngScreen Shot 2020-09-01 at 3.45.05 PM.png
    Figure M-28: α=60°, hi=173 mm, hb=173 mm.

    The cutting forces Fh and Fv on the blade. Experiments in 200 μm sand, with α=45°, β=30°, φ=38°, δ=30°, ni=38.53%, nmax=43.88%, ki=0.000165 m/s, kmax=0.000320 m/s, hi=173 mm, hb=173 mm, w=0.2 m, z=0.6 m and a non-cavitating cutting process.


    17.13: Appendix M- Experiments in Water Saturated Sand is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?