Skip to main content
Engineering LibreTexts

1: Algorithmic Problem Solving

  • Page ID
    46789
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Unit Objectives

    Upon completion of this unit the learner should be able to:

    • describe an algorithm
    • explain the relationship between data and algorithm
    • outline the characteristics of algorithms
    • apply pseudo codes and flowcharts to represent algorithms

    Unit Introduction

    This unit introduces learners to data structures and algorithm course. The unit is on the different data structures and their algorithms that can help implement the different data structures in the computer. The application of the different data structures is presented by using examples of algorithms and which are not confined to a particular computer programming language.

    Key Terms
    • Data: the structural representation of logical relationships between elements of data
    • Algorithm: finite sequence of steps for accomplishing some computational task
    • Pseudo code: an informal high-level description of the operating principle of a computer program or other algorithm
    • Flow chart: diagrammatic representation illustrates a solution model to a given problem.

    Learning Activities

    • 1.1: Activity 1 - Introduction to Algorithms and Problem Solving
      In this learning activity section, the learner will be introduced to algorithms and how to write algorithms to solve tasks faced by learners or everyday problems. Examples of the algorithm are also provided with a specific application to everyday problems that the learner is familiar with. The learners will particularly learn what is an algorithm, the process of developing a solution for a given task, and finally examples of application of the algorithms are given.
    • 1.2: Activity 2 - The characteristics of an algorithm
      This section introduces the learners to the characteristics of algorithms. These characteristics make the learner become aware of what to ensure is basic, present and mandatory for any algorithm to qualify to be one. It also exposes the learner to what to expect from an algorithm to achieve or indicate. Key expectations are: the fact that an algorithm must be exact, terminate, effective, general among others.
    • 1.3: Activity 3 - Using pseudo-codes and flowcharts to represent algorithms
      The student will learn how to design an algorithm using either a pseudo code or flowchart. Pseudo code is a mixture of English like statements, some mathematical notations and selected keywords from a programming language. It is one of the tools used to design and develop the solution to a task or problem. Pseudo codes have different ways of representing the same thing and emphasis is on the clarity and not style.
    • 1.4: Unit Summary
      In this unit, you have seen what an algorithm is. Based on this knowledge, you should now be able to characterize an algorithm by stating its properties. We have explored the different ways of representing an algorithm such as using human language, pseudo codes and flow chart. You should now be able to present solutions to problems in form of an algorithm.


    This page titled 1: Algorithmic Problem Solving is shared under a CC BY-SA license and was authored, remixed, and/or curated by Harrison Njoroge (African Virtual University) .

    • Was this article helpful?