# 10.3: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Exercise $$\PageIndex{1}$$

Name some of the problems with naming the classes in an OWL file, when considering multiple languages.

Exercise $$\PageIndex{2}$$

Describe in your own words the theoretical solution that Lemon exhibits, both in the content of a single natural language and in the multilingual setting.

Exercise $$\PageIndex{3}$$

What can ontology verbalization be used for?

Exercise $$\PageIndex{4}$$

Describe how the template-based approach works for ontology verbalization.

Exercise $$\PageIndex{5}$$

Create a Lemon file for the ontology of your choice, in the language of your choice.

Exercise $$\PageIndex{6}$$

Devise templates in English for the following axiom types:

1. $$C\sqcap D\sqsubseteq\bot$$
2. $$\exists R.C\sqsubseteq D$$
3. $$C\sqsubseteq\forall R.D$$

You may want to do this for a language of choice, but this may turn out a hard exercise then, depending on the chosen language.

Possible templates are as follows, noting that one can choose other words as well, and choose between being as close to the structure of the axiom, or decide on a more ‘colloquial’ rendering

(a) “$$< C >$$ and $$< D >$$ are disjoint”

(a) “If there exists an outgoing arc from $$< R >$$ to $$< C >$$, then it originates in $$< D >$$”, or, easier to read: “$$< D >$$ is the domain of $$< R >$$ (when $$< R >$$ relates to $$< C >$$)”

(a) “Each $$< C > < R >$$ only $$< D >$$”

Exercise $$\PageIndex{7}$$

Devise a software architecture that combines both a solution to multilingualism and can verbalize an ontology.