Skip to main content
Engineering LibreTexts

5.3: Strong Induction vs. Induction vs. Well Ordering

  • Page ID
    48318
    • Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer
    • Google and Massachusetts Institute of Technology via MIT OpenCourseWare
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Strong induction looks genuinely “stronger” than ordinary induction —after all, you can assume a lot more when proving the induction step. Since ordinary induction is a special case of strong induction, you might wonder why anyone would bother with the ordinary induction.

    But strong induction really isn’t any stronger, because a simple text manipulation program can automatically reformat any proof using strong induction into a proof using ordinary induction—just by decorating the induction hypothesis with a universal quantifier in a standard way. Still, it’s worth distinguishing these two kinds of induction, since which you use will signal whether the inductive step for \(n + 1\) follows directly from the case for \(n\) or requires cases smaller than \(n\), and that is generally good for your reader to know.

    The template for the two kinds of induction rules looks nothing like the one for the Well Ordering Principle, but this chapter included a couple of examples where induction was used to prove something already proved using well ordering. In fact, this can always be done. As the examples may suggest, any well ordering proof can automatically be reformatted into an induction proof. So theoretically, no one need bother with the Well Ordering Principle either.

    But it’s equally easy to go the other way, and automatically reformat any strong induction proof into a Well Ordering proof. The three proof methods—well ordering, induction, and strong induction—are simply different formats for presenting the same mathematical reasoning!

    So why three methods? Well, sometimes induction proofs are clearer because they don’t require proof by contradiction. Also, induction proofs often provide recursive procedures that reduce large inputs to smaller ones. On the other hand, well ordering can come out slightly shorter and sometimes seem more natural and less worrisome to beginners.

    So which method should you use? There is no simple recipe. Sometimes the only way to decide is to write up a proof using more than one method and compare how they come out. But whichever method you choose, be sure to state the method up front to help a reader follow your proof.


    This page titled 5.3: Strong Induction vs. Induction vs. Well Ordering is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer (MIT OpenCourseWare) .

    • Was this article helpful?