Skip to main content
Engineering LibreTexts

10.5: Network Latency

  • Page ID
    48360
    • Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer
    • Google and Massachusetts Institute of Technology via MIT OpenCourseWare
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We’ll sometimes be choosing routings through a network that optimize some quantity besides delay. For example, in the next section we’ll be trying to minimize packet congestion. When we’re not minimizing delay, shortest routings are not always the best, and in general, the delay of a packet will depend on how it is routed. For any routing, the most delayed packet will be the one that follows the longest path in the routing. The length of the longest path in a routing is called its latency.

    The latency of a network depends on what’s being optimized. It is measured by assuming that optimal routings are always chosen in getting inputs to their specified outputs. That is, for each routing problem, \(\pi\), we choose an optimal routing that solves \(\pi\). Then network latency is defined to be the largest routing latency among these optimal routings. Network latency will equal network diameter if routings are always chosen to optimize delay, but it may be significantly larger if routings are chosen to optimize something else.

    For the networks we consider below, paths from input to output are uniquely determined (in the case of the tree) or all paths are the same length, so network latency will always equal network diameter.


    This page titled 10.5: Network Latency is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Eric Lehman, F. Thomson Leighton, & Alberty R. Meyer (MIT OpenCourseWare) .

    • Was this article helpful?