Skip to main content
Engineering LibreTexts

4.10: The Laplacian Operator

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The Laplacian \(\nabla^2 f\) of a field \(f({\bf r})\) is the divergence of the gradient of that field:

    \[\nabla^2 f \triangleq \nabla\cdot\left(\nabla f\right) \label{m0099_eLaplaceDef} \]

    Note that the Laplacian is essentially a definition of the second derivative with respect to the three spatial dimensions. For example, in Cartesian coordinates,

    \[\nabla^2 f= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \label{m0099_eLaplaceScalar} \]

    as can be readily verified by applying the definitions of gradient and divergence in Cartesian coordinates to Equation \ref{m0099_eLaplaceDef}.

    The Laplacian relates the electric potential (i.e., \(V\), units of V) to electric charge density (i.e., \(\rho_v\), units of C/m\(^3\)). This relationship is known as Poisson’s Equation:

    \[\nabla^2 V = - \frac{\rho_v}{\epsilon} \nonumber \]

    where \(\epsilon\) is the permittivity of the medium. The fact that \(V\) is related to \(\rho_v\) in this way should not be surprising, since electric field intensity \(({\bf E}\), units of V/m) is proportional to the derivative of \(V\) with respect to distance (via the gradient) and \(\rho_v\) is proportional to the derivative of \({\bf E}\) with respect to distance (via the divergence).

    The Laplacian operator can also be applied to vector fields; for example, Equation \ref{m0099_eLaplaceScalar} is valid even if the scalar field “\(f\)” is replaced with a vector field. In the Cartesian coordinate system, the Laplacian of the vector field \({\bf A} = \hat{\bf x}A_x + \hat{\bf y}A_y + \hat{\bf z}A_z\) is

    \[\nabla^2 {\bf A} = \hat{\bf x}\nabla^2 A_x + \hat{\bf y}\nabla^2 A_y + \hat{\bf z}\nabla^2 A_z \nonumber \]

    An important application of the Laplacian operator of vector fields is the wave equation; e.g., the wave equation for \({\bf E}\) in a lossless and source-free region is

    \[\nabla^2{\bf E} + \beta^2{\bf E} = 0 \nonumber \]

    where \(\beta\) is the phase propagation constant.

    It is sometimes useful to know that the Laplacian of a vector field can be expressed in terms of the gradient, divergence, and curl as follows: \[\nabla^2 {\bf A} = \nabla\left(\nabla\cdot{\bf A}\right) - \nabla\times\left(\nabla\times{\bf A}\right) \nonumber \]

    The Laplacian operator in the cylindrical and spherical coordinate systems is given in Appendix B2.

    This page titled 4.10: The Laplacian Operator is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Steven W. Ellingson (Virginia Tech Libraries' Open Education Initiative) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.