Skip to main content
Engineering LibreTexts

2: AC power flow in linear networks

  • Page ID
    54440
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Introduction

    Electric power systems usually involve sinusoidally varying (or nearly so) voltages and currents. That is, voltage and current are functions of time that are nearly pure sine waves at fixed frequency. In North America, most ships at sea and eastern Japan that frequency is 60 Hz. In most of the rest of the world it is 50 Hz. Normal power system operation is at this fixed frequency, which is why we study how systems operate in this mode. We will deal with transients later.

    This note deals with alternating voltages and currents and with associated energy flows. The focus is on sinusoidal steady state conditions, in which virtually all quantities of interest may be represented by single, complex numbers.

    Accordingly, this section opens with a review of complex numbers and with representation of voltage and current as complex amplitudes with complex exponential time dependence. The discussion proceeds, through impedance, to describe a pictorial representation of complex amplitudes, called phasors. Power is then defined and, in sinusoidal steady state, reduced to complex form. Finally, flow of power through impedances and a conservation law are discussed.

    Secondarily, this section of the notes deals with transmission lines that have interesting behavior, both in the time and frequency domails.


    This page titled 2: AC power flow in linear networks is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James Kirtley (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.