Skip to main content
Engineering LibreTexts

20.1: Theory Overview

  • Page ID
    37290
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    On a practical level, PNP transistors may be thought of as a mirror image of their NPN counterparts. That is, all of the device's voltage polarities and current directions will be opposite of those found with NPNs. In fact, a simple way to turn an NPN circuit into an equivalent PNP circuit is to swap out the transistor and then flip the polarity of the power supply (or supplies, as the case may be). The resulting circuit will produce essentially the same voltages and currents as the original but with reversed polarities. By no means are negative power supplies a requirement to use PNPs, though. Commonly, the circuit is “flipped top to bottom” and implemented with a positive supply. In this case the emitter will be found toward the top and the collector toward the bottom. In some instances this orientation may also reverse the operational logic of the circuit. For example, the “flipped” PNP LED driver becomes an inverting driver. That is, a logic low will light the LED instead of a logic high.


    This page titled 20.1: Theory Overview is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.