# 9.5: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## 9.5.1: Analysis Problems

1. For the circuit of Figure $$\PageIndex{1}$$, determine compliance, $$P_{load(max)}$$, $$P_{D(max)}$$, $$BV_{CEO}$$ and $$I_{C(max)}$$. $$V_{CC}$$ = 15 V, $$V_{EE}$$ = −15 V, $$\beta$$ = 75, $$R_L$$ = 16 $$\Omega$$, $$R_1$$ = 680 $$\Omega$$, $$R_2$$ = 680 $$\Omega$$.

2. For the circuit of Figure $$\PageIndex{1}$$, determine $$Z_{in}$$. $$V_{CC}$$ = 15 V, $$V_{EE}$$ = −15 V, $$\beta$$ = 75, $$R_L$$ = 16 $$\Omega$$, $$R_1$$ = 680 $$\Omega$$, $$R_2$$ = 680 $$\Omega$$.

3. For the circuit of Figure $$\PageIndex{1}$$, determine $$Z_{in}$$. $$V_{CC}$$ = 25 V, $$V_{EE}$$ = −25 V, $$\beta$$ = 70, $$R_L$$ = 8 $$\Omega$$, $$R_1$$ = 560 $$\Omega$$, $$R_2$$ = 560 $$\Omega$$.

Figure $$\PageIndex{1}$$

4. For the circuit of Figure $$\PageIndex{1}$$, determine compliance $$P_{load(max)}$$, $$P_{D(max)}$$, $$BV_{CEO}$$ and $$I_{C(max)}$$. $$V_{CC}$$ = 25 V, $$V_{EE}$$ = −25 V, $$\beta$$ = 70, $$R_L$$ = 8 $$\Omega$$, $$R_1$$ = 560 $$\Omega$$, $$R_2$$ = 560 $$\Omega$$.

5. For the circuit of Figure $$\PageIndex{2}$$, determine $$P_{load(max)}$$, $$P_{D(max)}$$, $$BV_{CEO}$$ and $$I_{C(max)}$$. $$V_{CC}$$ = 15 V, $$\beta$$ = 75, $$R_L$$ = 16 $$\Omega$$, $$R_1$$ = 630 $$\Omega$$, $$R_2$$ = 630 $$\Omega$$.

Figure $$\PageIndex{2}$$

6. For the circuit of Figure $$\PageIndex{2}$$, determine $$Z_{in}$$. $$V_{CC}$$ = 15 V, $$\beta$$ = 75, $$R_L$$ = 16 $$\Omega$$, $$R_1$$ = 630 $$\Omega$$, $$R_2$$ = 630 $$\Omega$$.

7. For the circuit of Figure $$\PageIndex{2}$$, determine $$Z_{in}$$. $$V_{CC}$$ = 25 V, $$\beta$$ = 70, $$R_L$$ = 8 $$\Omega$$, $$R_1$$ = 560 $$\Omega$$, $$R_2$$ = 560 $$\Omega$$.

8. For the circuit of Figure $$\PageIndex{2}$$, determine $$P_{load(max)}$$, $$P_{D(max)}$$, $$BV_{CEO}$$ and $$I_{C(max)}$$. $$V_{CC}$$ = 25 V, $$\beta$$ = 70, $$R_L$$ = 8 $$\Omega$$, $$R_1$$ = 510 $$\Omega$$, $$R_2$$ = 510 $$\Omega$$.

9. For the circuit of Figure $$\PageIndex{3}$$, determine $$P_{load(max)}$$, $$P_{D(max)}$$, $$BV_{CEO}$$ and $$I_{C(max)}$$ for the output transistors. $$V_{CC}$$ = 24 V, $$V_{EE}$$ = −24 V, $$\beta$$ = 75, $$R_L$$ = 8 $$\Omega$$, $$R_1$$ = 2.5 k$$\Omega$$, $$R_2$$ = 300 $$\Omega$$, $$R_3$$ = 330 $$\Omega$$, $$R_4$$ = 63 $$\Omega$$.

Figure $$\PageIndex{3}$$

10. For the circuit of Figure $$\PageIndex{3}$$, determine $$A_v$$ and $$Z_{in}$$. $$V_{CC}$$ = 24 V, $$V_{EE}$$ = −24 V, $$\beta$$ = 75, $$R_L$$ = 8 $$\Omega$$, $$R_1$$ = 2.5 k$$\Omega$$, $$R_2$$ = 300 $$\Omega$$, $$R_3$$ = 330 $$\Omega$$, $$R_4$$ = 63 $$\Omega$$.

Figure $$\PageIndex{4}$$

11. For the circuit of Figure $$\PageIndex{4}$$, determine $$P_{load(max)}$$, $$P_{D(max)}$$, $$BV_{CEO}$$ and $$I_{C(max)}$$ for the output transistors. $$V_{CC}$$ = 24 V, $$V_{EE}$$ = −24 V, $$\beta$$ = 75, $$R_L$$ = 16 $$\Omega$$, $$R_1$$ = 600 $$\Omega$$, $$R_2$$ = 5 k$$\Omega$$, $$R_3$$ = 63 $$\Omega$$, $$R_4$$ = 330 $$\Omega$$.

12. For the circuit of Figure $$\PageIndex{4}$$, determine $$A_v$$ and $$Z_{in}$$. $$V_{CC}$$ = 24 V, $$V_{EE}$$ = −24 V, $$\beta$$ = 75, $$R_L$$ = 16 $$\Omega$$, $$R_1$$ = 600 $$\Omega$$, $$R_2$$ = 5 k$$\Omega$$, $$R_3$$ = 63 $$\Omega$$, $$R_4$$ = 330 $$\Omega$$.

13. Determine the limit current for the circuit of Figure $$\PageIndex{5}$$ if $$R_E$$ = 0.2 $$\Omega$$.

Figure $$\PageIndex{5}$$

14. Determine $$P_{load(max)}$$, and $$P_{D(max)}$$, $$BV_{CEO}$$ and $$I_{C(max)}$$ for the output and driver transistors of Figure $$\PageIndex{6}$$. $$V_{CC}$$ = 50 V, $$V_{EE}$$ = −50 V, $$\beta$$ = 75, $$R_L$$ = 8 $$\Omega$$, $$R_5$$ through $$R_8$$ = 0.05 $$\Omega$$. Assume all other components produce proper bias.

## 9.5.2: Design Problems

15. For the circuit of Figure $$\PageIndex{3}$$, determine values for $$R_1$$ and $$R_2$$ for proper bias. $$V_{CC}$$ = 32 V, $$V_{EE}$$ = −32 V, $$\beta$$ = 75, $$R_L$$ = 8 $$\Omega$$, $$R_3$$ = 330 $$\Omega$$, $$R_4$$ = 63 $$\Omega$$.

16. Determine a value for $$R_E$$ to set the limit current for the circuit of Figure $$\PageIndex{5}$$ to 2 A.

## 9.5.3: Challenge Problems

17. For the circuit of Figure $$\PageIndex{6}$$, determine values for $$R_1$$ and $$R_2$$ for proper bias. $$V_{CC}$$ = 50 V, $$V_{EE}$$ = −50 V, $$\beta$$ = 85, $$R_L$$ = 8 $$\Omega$$, $$R_5$$ through $$R_8$$ = 0.05 $$\Omega$$, $$R_3$$ = 2.2 k$$\Omega$$, $$R_4$$ = 330 $$\Omega$$.

18. For the circuit of Figure $$\PageIndex{7}$$, determine a value for $$R_5$$ for proper bias. $$V_{CC}$$ = 30 V, $$V_{EE}$$ = −30 V, $$\beta$$ = 100, $$R_L$$ = 16 $$\Omega$$, $$R_1$$ = 2.2 k$$\Omega$$, $$R_2$$ = 8.2 k$$\Omega$$, $$R_3$$ = 1.2 k$$\Omega$$, $$R_4$$ = 47 $$\Omega$$, $$R_5$$ = 330 $$\Omega$$, $$R_6$$ = 470 $$\Omega$$, $$R_7$$ = 68 $$\Omega$$.

Figure $$\PageIndex{6}$$

## 9.5.4: Computer Simulation Problems

19. Perform a transient analysis on the circuit of Problem 1 to verify the compliance.

20. Perform a transient analysis on the circuit of Problem 4 to verify the compliance.

21. Perform a DC analysis on the design from Problem 15 to verify the results.

22. Perform a DC analysis on the design from Problem 17 to verify the results.

Figure $$\PageIndex{7}$$

This page titled 9.5: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.