10.6: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

10.6.1: Analysis Problems

1. For the circuit of Figure $$\PageIndex{1}$$, determine $$I_D$$ and $$V_{DS}$$. $$I_{DSS}$$ = 40 mA, $$V_{GS(off)}$$ = −4 V, $$V_{DD}$$ = 26 V, $$V_{GG}$$ = −2 V, $$R_G$$ = 220 k$$\Omega$$, $$R_D$$ = 1.2 k$$\Omega$$.

2. For the circuit of Figure $$\PageIndex{1}$$, determine $$I_D$$ and $$V_{DS}$$. $$I_{DSS}$$ = 20 mA, $$V_{GS(off)}$$ = −3 V, $$V_{DD}$$ = 22 V, $$V_{GG}$$ = −1 V, $$R_G$$ = 390 k$$\Omega$$, $$R_D$$ = 1 k$$\Omega$$.

Figure $$\PageIndex{1}$$

3. For the circuit of Figure $$\PageIndex{2}$$, determine $$I_D$$, $$V_G$$ and $$V_D$$. $$I_{DSS}$$ = 24 mA, $$V_{GS(off)}$$ = −6 V, $$V_{DD}$$ = 36 V, $$R_G$$ = 220 k$$\Omega$$, $$R_S$$ = 2 k$$\Omega$$, $$R_D$$ = 1.8 k$$\Omega$$.

4. For the circuit of Figure $$\PageIndex{2}$$, determine $$I_D$$, $$V_S$$ and $$V_{DS}$$. $$I_{DSS}$$ = 18 mA, $$V_{GS(off)}$$ = −3 V, $$V_{DD}$$ = 30 V, $$R_G$$ = 270 k$$\Omega$$, $$R_S$$ = 2.7 k$$\Omega$$, $$R_D$$ = 3.3 k$$\Omega$$.

Figure $$\PageIndex{2}$$

5. For Figure $$\PageIndex{3}$$, determine $$I_D$$, $$V_G$$ and $$V_D$$. $$I_{DSS}$$ = 16 mA, $$V_{DD}$$ = 25 V, $$V_{GS(off)}$$ = −3 V, $$V_{SS}$$ = −6 V, $$R_G$$ = 560 k$$\Omega$$, $$R_S$$ = 2 k$$\Omega$$, $$R_D$$ = 3.6 k$$\Omega$$.

6. For Figure $$\PageIndex{3}$$, determine $$I_D$$, and $$V_{DS}$$. $$I_{DSS}$$ = 16 mA, $$V_{DD}$$ = 25 V, $$V_{GS(off)}$$ = −3 V, $$V_{SS}$$ = −9 V, $$R_G$$ = 680 k$$\Omega$$, $$R_S$$ = 2 k$$\Omega$$, $$R_D$$ = 2.7 k$$\Omega$$.

Figure $$\PageIndex{3}$$

7. For Figure $$\PageIndex{4}$$, determine $$I_D$$, $$V_G$$ and $$V_D$$. $$I_{DSS}$$ = 16 mA, $$V_{DD}$$ = 25 V, $$V_{GS(off)}$$ = −3 V, $$V_{EE}$$ = −9 V, $$R_G$$ = 810 k$$\Omega$$, $$R_E$$ = 2 k$$\Omega$$, $$R_D$$ = 2.7 k$$\Omega$$.

8. For the circuit of Figure $$\PageIndex{4}$$, determine $$I_D$$ and $$V_{DS}$$. $$I_{DSS}$$ = 40 mA, $$V_{GS(off)}$$ = −4 V, $$V_{DD}$$ = 30 V, $$V_{EE}$$ = −6 V, $$R_G$$ = 750 k$$\Omega$$, $$R_E$$ = 500 $$\Omega$$, $$R_D$$ = 1.8 k$$\Omega$$.

10.6.2: Design Problems

9. Using the circuit of Figure $$\PageIndex{2}$$, determine a value for $$R_S$$ to set $$I_D$$ to 4 mA. $$I_{DSS}$$ = 10 mA, $$V_{GS(off)}$$ = −2 V, $$V_{DD}$$ = 20 V, $$R_G$$ = 430 k$$\Omega$$, $$R_D$$ = 1.8 k$$\Omega$$.

10. Using the circuit of Figure $$\PageIndex{1}$$, determine a value for $$V_{GG}$$ to set $$I_D$$ to 2 mA. $$I_{DSS}$$ = 10 mA, $$V_{GS(off)}$$ = −4 V, $$V_{DD}$$ = 28 V, $$R_G$$ = 470 k$$\Omega$$, $$R_D$$ = 4.7 k$$\Omega$$.

11. Using the circuit of Figure $$\PageIndex{4}$$, determine a value for $$R_E$$ to set $$I_D$$ to 4 mA. $$I_{DSS}$$ = 18 mA, $$V_{GS(off)}$$ = −3 V, $$V_{DD}$$ = 25 V, $$V_{EE}$$ = −12 V, $$R_G$$ = 330 k$$\Omega$$, $$R_D$$ = 2.2 k$$\Omega$$.

Figure $$\PageIndex{4}$$

12. Using the circuit of Figure $$\PageIndex{4}$$, determine values for $$R_E$$ and $$R_D$$ to set $$I_D$$ to 5 mA and $$V_D$$ to 6 V. $$I_{DSS}$$ = 20 mA, $$V_{GS(off)}$$ = −4 V, $$V_{DD}$$ = 32 V, $$V_{EE}$$ = −10 V, $$R_G$$ = 390 k$$\Omega$$.

10.6.3: Challenge Problems

13. Following the derivation of Equation 10.4.2, derive Equation 10.4.4.

14. Using the circuit of Figure $$\PageIndex{3}$$, determine values for $$R_S$$ and $$V_{SS}$$ to set $$I_D$$ to 4 mA. $$I_{DSS}$$ = 16 mA, $$V_{GS(off)}$$ = −4 V, $$V_{DD}$$ = 30 V, $$R_G$$ = 680 k$$\Omega$$, $$R_D$$ = 2 k$$\Omega$$.

10.6.4: Computer Simulation Problems

15. Perform a DC operating point simulation on the circuit of Problem 7 to verify the results. The J111 will be sufficient.

16. Perform a DC operating point simulation on the circuit of Problem 10 to verify the results. The J111 will be sufficient.

10.6.5: Department of Marginal Utility

Figure $$\PageIndex{5}$$: Combination Bias Surface Plot.

The graphs of Figure 10.4.13 represent three slices from this surface.

Looks cool, but...

This page titled 10.6: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.