Skip to main content
Engineering LibreTexts

13.5: Exercises

  • Page ID
    25337
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    13.5.1: Analysis Problems

    1. For the amplifier of Figure \(\PageIndex{1}\), determine \(Z_{in}\) and \(A_v\). \(V_{in}\) = 20 mV, \(I_{DSS}\) = 10 mA, \(V_{GS(off)}\) = −2 V, \(V_{DD}\) = 20 V, \(R_G\) = 750 k\(\Omega\), \(R_D\) = 2 k\(\Omega\), \(R_L\) = 4 k\(\Omega\), \(R_S\) = 1 k\(\Omega\), \(R_{SW}\) = 200 \(\Omega\).

    2. For the amplifier of Figure \(\PageIndex{1}\), determine \(Z_{in}\) and \(V_{out}\). \(V_{in}\) = 25 mV, \(I_{DSS}\) = 15 mA, \(V_{GS(off)}\) = −2 V, \(V_{DD}\) = 22 V, \(R_G\) = 330 k\(\Omega\), \(R_D\) = 2 k\(\Omega\), \(R_L\) = 6 k\(\Omega\), \(R_S\) = 510 \(\Omega\), \(R_{SW}\) = 220 \(\Omega\).

    clipboard_ed0bde85afa4dbd6fd0f99df3724de6b3.png

    Figure \(\PageIndex{1}\)

    3. For the circuit of Figure \(\PageIndex{2}\), determine \(Z_{in}\) and \(A_v\). \(V_{in}\) = 10 mV, \(I_{DSS}\) = 12 mA, \(V_{GS(off)}\) = −2.5 V, \(V_{DD}\) = 26 V, \(R_G\) = 510 k\(\Omega\), \(R_D\) = 1.2 k\(\Omega\), \(R_L\) = 25 k\(\Omega\).

    4. For the circuit of Figure \(\PageIndex{2}\), determine \(Z_{in}\) and \(V_{out}\). \(V_{in}\) = 25 mV, \(I_{DSS}\) = 15 mA, \(V_{GS(off)}\) = −1.5 V, \(V_{DD}\) = 24 V, \(R_G\) = 820 k\(\Omega\), \(R_D\) = 1 k\(\Omega\), \(R_L\) = 12 k\(\Omega\).

    clipboard_e843337dff775a2dcde015501ae874b72.png

    Figure \(\PageIndex{2}\)

    5. For the circuit of Figure \(\PageIndex{3}\), determine \(Z_{in}\) and \(V_{out}\). \(V_{in}\) = 25 mV, \(I_{DSS}\) = 8 mA, \(V_{GS(off)}\) = −3.5 V, \(V_{DD}\) = 24 V, \(R_1\) = 1 M\(\Omega\), \(R_2\) = 100 k\(\Omega\), \(R_D\) = 800 \(\Omega\), \(R_L\) = 10 k\(\Omega\).

    6. For the circuit of Figure \(\PageIndex{3}\), determine \(Z_{in}\) and \(A_v\). \(V_{in}\) = 10 mV, \(I_{DSS}\) = 6 mA, \(V_{GS(off)}\) = −4 V, \(V_{DD}\) = 26 V, \(R_1\) = 2 M\(\Omega\), \(R_2\) = 120 k\(\Omega\), \(R_D\) = 1.2 k\(\Omega\), \(R_L\) = 15 k\(\Omega\).

    clipboard_e565998413877d065e47beb9fee744dc3.png

    Figure \(\PageIndex{3}\)

    7. For the circuit of Figure \(\PageIndex{4}\), determine \(Z_{in}\) and \(V_{out}\). \(V_{in}\) = 20 mV, \(I_{D(on)}\) = 6 mA at \(V_{DS(on)}\) = 3 V, \(V_{GS(th)}\) = 2.5 V, \(V_{DD}\) = 34 V, \(R_1\) = 1 M\(\Omega\), \(R_2\) = 100 k\(\Omega\), \(R_D\) = 1 k\(\Omega\), \(R_L\) = 10 k\(\Omega\).

    8. For the circuit of Figure \(\PageIndex{4}\), determine \(Z_{in}\) and \(A_v\). \(V_{in}\) = 15 mV, \(I_{D(on)}\) = 10 mA at \(V_{DS(on)}\) = 4 V, \(V_{GS(th)}\) = 2 V, \(V_{DD}\) = 30 V, \(R_1\) = 2 M\(\Omega\), \(R_2\) = 180 k\(\Omega\), \(R_D\) = 1.2 k\(\Omega\), \(R_L\) = 15 k\(\Omega\).

    clipboard_e4332635bd0017604d6b1dfe2ec92c4e4.png

    Figure \(\PageIndex{4}\)

    9. For the circuit of Figure \(\PageIndex{5}\), determine \(Z_{in}\) and \(V_{out}\). \(V_{in}\) = 200 mV, \(I_{DSS}\) = 15 mA, \(V_{GS(off)}\) = −3 V, \(V_{DD}\) = 15 V, \(R_G\) = 910 k\(\Omega\), \(R_L\) = 10 k\(\Omega\), \(R_S\) = 330 \(\Omega\).

    10. For the circuit of Figure \(\PageIndex{5}\), determine \(Z_{in}\) and \(V_{out}\). \(V_{in}\) = 200 mV, \(I_{DSS}\) = 20 mA, \(V_{GS(off)}\) = −2 V, \(V_{DD}\) = 12 V, \(R_G\) = 1 M\(\Omega\), \(R_L\) = 1.8 k\(\Omega\), \(R_S\) = 220 \(\Omega\).

    clipboard_e0d31ccef5e05282fadd09381d7306ebb.png

    Figure \(\PageIndex{5}\)

    11. For the circuit of Figure \(\PageIndex{6}\), determine \(Z_{in}\) and \(A_v\). \(I_{DSS}\) = 18 mA, \(V_{GS(off)}\) = −2 V, \(V_{DD}\) = 12 V, \(V_{SS}\) = −4 V, \(R_G\) = 680 k\(\Omega\), \(R_L\) = 10 k\(\Omega\), \(R_S\) = 1 k\(\Omega\).

    12. For the circuit of Figure \(\PageIndex{6}\), determine \(Z_{in}\) and \(A_v\). \(I_{DSS}\) = 20 mA, \(V_{GS(off)}\) = −2 V, \(V_{DD}\) = 10 V, \(V_{SS}\) = −6 V, \(R_G\) = 2.2 M\(\Omega\), \(R_L\) = 5 k\(\Omega\), \(R_S\) = 510 \(\Omega\).

    clipboard_e79874ae9c229843fd3b8f123f3b84f9a.png

    Figure \(\PageIndex{6}\)

    13.5.2: Design Problems

    13. Following the circuit of Figure \(\PageIndex{1}\), design an amplifier with a gain of at least 5 and an input impedance of at least 500 k\(\Omega\). \(R_L\) = 10 k\(\Omega\). The MOSFET has the following parameters: \(V_{GS(off)}\) = −2 V, \(I_{DSS}\) = 25 mA. Try to use standard resistor values.

    14. Using the circuit of Figure \(\PageIndex{5}\), design a follower with a gain of at least .75 and an input impedance of at least 1 M\(\Omega\). \(R_L\) = 2 k\(\Omega\). The MOSFET has the following parameters: \(V_{GS(off)}\) = −1.5 V, \(I_{DSS}\) = 40 mA. Try to use standard resistor values.

    13.5.3: Challenge Problems

    15. For the circuit of Figure \(\PageIndex{7}\), determine \(Z_{in}\) and \(A_v\). \(I_{DSS}\) = 15 mA, \(V_{GS(off)}\) = −2 V.

    clipboard_e5a1b50e89a4e914132cadad704e8a7fa.png

    Figure \(\PageIndex{7}\)

    16. For the circuit of Figure \(\PageIndex{8}\), determine \(Z_{in}\) and \(A_v\). \(I_{DSS}\) = 12 mA, \(V_{GS(off)}\) = −1.5 V.

    clipboard_efd376cc47b42fe9789cbecad01353818.png

    Figure \(\PageIndex{8}\)

    13.5.4: Computer Simulation Problems

    17. Utili\(Z_{in}\)g manufacturer's data sheets, find devices with the following specifications (typical) and verify them using the measurement techniques presented in the prior chapter.

    Device 1: \(V_{GS(off)}\) = −2 V, \(I_{DSS}\) = 25 mA.

    Device 2: \(V_{GS(off)}\) = −1.5 V, \(I_{DSS}\) = 40 mA.

    18. Using the device model from the preceding problem, verify the design of Problem 13.

    19. Using the device model from Problem 17, verify the design of Problem 14.


    This page titled 13.5: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?