Skip to main content
Engineering LibreTexts

1.14: Parseval’s Theorem

  • Page ID
    50115
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    It is often convenient to normalize a wavepacket in k space. To do so, we can apply Parseval's theorem.

    Let's consider the bracket of two functions, f(x) and g(x) with Fourier transform pairs F(k) and G(k), respectively..

    \[ \langle f|g\rangle = \int^{\infty}_{-\infty} f(x)^{*}g(x)dx \nonumber \]

    Now, replacing the functions by their Fourier transforms yields

    \[ \int^{\infty}_{-\infty} f(x)^{*}g(x)dx=\int^{\infty}_{-\infty}[\frac{1}{2\pi}\int^{\infty}_{-\infty}F(k’)e^{-ik’x}dk’]^{*}[\frac{1}{2\pi}\int^{\infty}_{-\infty}G(k)e^{-ikx}dk]dx \nonumber \]

    Rearranging the order of integration gives

    \[ \int^{\infty}_{-\infty}[\frac{1}{2\pi}\int^{\infty}_{-\infty}F(k’)e^{-ik’x}dk’]^{*}[\frac{1}{2\pi}\int^{\infty}_{-\infty}G(k)e^{-ikx}dk]dx \nonumber \]

    \( =\frac{1}{2\pi}\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}F(k’)*G(k)\frac{1}{2\pi}e^{-i(k-k’)x}dxdk’dk \)

    From Equation (1.9.6) the integration over the complex exponential yields a delta function

    \[ \frac{1}{2\pi}\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}F(k’)*G(k)\frac{1}{2\pi}e^{-i(k-k’)x}dxdk’dk = \frac{1}{2\pi}\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}F(k’)^{*}G(k)\delta (k-k’)dk’dk \nonumber \]

    Thus,

    \[ \int^{\infty}_{-\infty}f(x)^{*}g(x)dx=\frac{1}{2\pi}\int^{\infty}_{-\infty}F(k)^{*}G(k)dk \nonumber \]

    It follows that if a wavefunction is normalized in real space, it is also normalized in k-space, i.e.,

    \[ \langle \psi|\psi \rangle = \langle A|A \rangle \nonumber \]

    where

    \[ \langle A|A \rangle = \frac{1}{2\pi} \int^{\infty}_{-\infty}A(k)^{*}A(k)dk \nonumber \]


    This page titled 1.14: Parseval’s Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marc Baldo (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.