Skip to main content
Engineering LibreTexts

1.15: Expectation values of k and \(\omega\)

  • Page ID
    50116
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The expectation value of k is obtained by integrating the wavefunction over all k. This must be performed in k-space

    \[ \langle k\rangle = \frac{\frac{1}{2\pi}\int^{+\infty}_{-\infty}A(k)^{*}kA(k)dk}{\frac{1}{2\pi}\int^{+\infty}_{-\infty}A(k)^{*}A(k)dk} = \frac{\langle A|k|A\rangle}{\langle A|A\rangle} \nonumber \]

    From the Inverse Fourier transform in k-space

    \[ \psi(x)=\frac{1}{2\pi}\int^{+\infty}_{-\infty}A(k)e^{ikx}dx \nonumber \]

    note that

    \[ -i\frac{d}{dx}\psi(x)=\frac{1}{2\pi}\int^{+\infty}_{-\infty}kA(k)e^{ikx}dx \nonumber \]

    Thus, we have the following Fourier transform pair:

    \[ -i \frac{d}{dx}\psi(x) \Leftrightarrow kA(k) \nonumber \]

    It follows that\(^{†}\)

    \[ \langle k\rangle = \frac{\langle A\rangle|k|\langle A\rangle}{\langle A\rangle|\langle A\rangle} = \frac{\langle \psi | -i\frac{d}{dx}|\psi\rangle}{\langle \psi|\psi\rangle} \nonumber \]

    Similarly, from the Inverse Fourier transform in the frequency domain

    \[ \psi(t)=\frac{1}{2\pi}\int^{+\infty}_{-\infty} A(\omega)e^{-i\omega t} d\omega \nonumber \]

    We can derive the Fourier transform pair:

    \[ i \frac{d}{dt} \psi(t) \Leftrightarrow \omega A(\omega) \nonumber \]

    It follows that

    \[ \langle \omega \rangle = \frac{\langle A\rangle|\omega |\langle A\rangle}{\langle A\rangle|\langle A\rangle} = \frac{\langle \psi | i\frac{d}{dt}|\psi\rangle}{\langle \psi|\psi\rangle} \nonumber \]

    We define two operators

    \[ \hat{k} = -i \frac{d}{dx} \nonumber \]

    and

    \[ \hat{\omega} = i \frac{d}{dt} \nonumber \]

    Operators only act on functions to the right. To signify this difference we mark them with a caret.

    We could also define the (somewhat trivial) position operator

    \[ \hat{x} = x \nonumber \]


    This page titled 1.15: Expectation values of k and \(\omega\) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marc Baldo (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.