Skip to main content
Engineering LibreTexts

1.16: The Commutator

  • Page ID
    50117
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    One must be careful to observe the correct order of operators. For example,

    \[ \hat{x}\hat{k} \neq \hat{k}\hat{x} \nonumber \]

    but

    \[ \hat{x}\hat{\omega} = \hat{\omega}\hat{x} \nonumber \]

    In quantum mechanics we define the commutator:

    \[ [\hat{q},\hat{r}]=\hat{q}\hat{r}-\hat{r}\hat{q} \nonumber \]

    We find that the operators \(\hat{r}\) and \(\hat{\omega}\) commute because \([\hat{x},\hat{\omega}]=0\).

    Considering the operators \(\hat{x}\) and \(\hat{k}\):

    \[ [\hat{x},\hat{k}]=-ix\frac{d}{dx}+i\frac{d}{dx}x \nonumber \]

    To simplify this further we need to operate on some function, f(x):

    \[\begin{align*} [\hat{x},\hat{k}]f(x) &=-ix\frac{df}{dx}+i\frac{d}{dx}(xf) \\[4pt] &= -ix\frac{df}{dx}+if\frac{dx}{dx}+ix\frac{df}{dx} \\[4pt] &=if \end{align*} \nonumber \]

    Thus, the operators \(\hat{x}\) and \(\hat{k}\) do not commute, i.e.

    \[ [\hat{x},\hat{k}] = i \nonumber \]

    Although we used Fourier transforms, Equation (1.10.13) can also be derived from the relation (1.16.5) for the non-commuting operators operators \(\hat{x}\) and \(\hat{k}\). It follows that all operators that do not commute are subject to a similar limit on the product of their uncertainties. We shall see in the next section that this limit is known as "the uncertainty principle‟.

    \(^{†}\)We have applied Parseval's theorem; see the Problem Sets.


    This page titled 1.16: The Commutator is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marc Baldo (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.