Skip to main content
Engineering LibreTexts

2.12: The 2-D Density of States - Quantum Wells Confined in 1-D

  • Page ID
    50142
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We showed above that the energy of electrons in a quantum well is

    \[ E = \frac{\hbar^{2}\pi^{2}}{2mL_{z}^{2}}n^{2}+\frac{\hbar^{2}(k_{x}^{2}+k_{y}^{2})}{2m},\ n=1,2, \dots \nonumber \]

    For the DOS calculation, the specifics of the confining potential are irrelevant; we note only that the electron is unconfined in two dimensions. If the quantum well has area \(L_{x}\times L_{y}\) then each allowed value of k-space occupies an area of \(2\pi/L_{x} \times 2\pi/L_{y}\).

    It is convenient to convert to cylindrical coordinates \((k,\phi,z)\) where k is the magnitude of the k-vector in the x-y plane. The number of states within a ring of thickness dk is then

    \[ n_{s}(k)dk=2 \times \frac{1}{4\pi^{2}/A}\times 2\pi kdk \nonumber \]

    where \(A=L_{x} \times L_{y}\), and again we have multiplied by two to account for the electron spin.

    Now k is related to the energy by

    \[ E-E_{n}=\frac{\hbar ^{2}k^{2}}{2m},\ E\geq E_{n} \nonumber \]

    Thus, from Equation 2.12.3,

    \[ g(E)dE = \frac{Am}{\pi \hbar^{2}}\sum_{n}u(E-E_{n})dE , \nonumber \]

    where u is the unit step function. The DOS is plotted in Figure 2.12.2.

    Screenshot 2021-04-16 at 13.37.25.png
    Figure \(\PageIndex{1}\): We calculate the number of k-states within a circle of radius |k|.
    Screenshot 2021-04-16 at 13.38.32.png
    Figure \(\PageIndex{2}\): The density of states for a quantum well (2d).

    This page titled 2.12: The 2-D Density of States - Quantum Wells Confined in 1-D is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marc Baldo (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.