Skip to main content
Engineering LibreTexts

6.20: Analytic approximations for the bandstructure of graphene and carbon nanotubes

  • Page ID
    52375
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Since the conduction properties of graphene are dominated by electrons occupying states at or near the K points, it is convenient to linearize the energy at \({\bf{\kappa = k+K}}\).

    The exact tight binding solution from Equation (6.18.23) is:

    \[ \varepsilon = \alpha \pm \beta \sqrt{3+ 2cos({\bf{k\cdot\tilde{a_{1}}}})+2cos({\bf{k\cdot\tilde{a_{2}}}})+2cos({\bf{k\cdot(\tilde{a_{1}}-\tilde{a_{2}})}})} \nonumber \]

    We substitute \(\bf{k = K+\kappa}\) and expand the \(cos({\bf{K+\kappa}})\) terms as a Taylor series to second order in \(\kappa\). This yields:

    \[ \varepsilon = \alpha \pm \beta \sqrt{3 +2cos({\bf{K\cdot\tilde{a_{1}}}})+2cos({\bf{K\cdot\tilde{a_{2}}}})+2cos({\bf{K\cdot(\tilde{a_{1}}-\tilde{a_{2}}}}))+2{\bf{\kappa \cdot \tilde{a_{1}}}}sin({\bf{K\cdot \tilde{a_{1}}}})+2{\bf{\kappa \cdot \tilde{a_{2}}}}sin({\bf{K\cdot \tilde{a_{2}}}})+2{\bf{\kappa \cdot (\tilde{a_{1}}}-\tilde{a_{2}})}sin({\bf{K\cdot (\tilde{a_{1}}}-\tilde{a_{2}})})-({\bf{\kappa \cdot \tilde{a_{1}}}})^{2}cos({\bf{K\cdot\tilde{a_{1}}}})-({\bf{\kappa \cdot \tilde{a_{2}}}})^{2}cos({\bf{K\cdot\tilde{a_{2}}}})-({\bf{\kappa \cdot (\tilde{a_{1}}-\tilde{a_{2}})}})^{2}cos({\bf{K\cdot(\tilde{a_{1}}-\tilde{a_{2}})}})} \nonumber \]

    Next, we note some identities:

    \[ cos({\bf{K\cdot\tilde{a_{1}}}}) = cos({\bf{K\cdot\tilde{a_{2}}}}) = cos({\bf{K\cdot(\tilde{a_{1}}-\tilde{a_{2}})}}) = -\frac{1}{2} \nonumber \]

    \[ sin({\bf{K\cdot\tilde{a_{1}}}}) = -sin({\bf{K\cdot\tilde{a_{2}}}}) = -sin({\bf{K\cdot(\tilde{a_{1}}-\tilde{a_{2}})}}) \nonumber \]

    From these identities Equation (6.19.2) reduces to

    \[ \varepsilon = \alpha \pm \beta \sqrt{\frac{1}{2}({\bf{\kappa \cdot \tilde{a_{1}}}})^{2}+\frac{1}{2}({\bf{\kappa \cdot \tilde{a_{2}}}})^{2}+\frac{1}{2}({\bf{\kappa \cdot (\tilde{a_{1}}}-\tilde{a_{2}})})^{2}} \nonumber \]

    Solving this (see the Problem Set) gives the approximate dispersion relation for graphene:

    \[ \varepsilon = \alpha \pm \frac{3}{2}\beta |\kappa| \nonumber \]

    Since the speed of the charge carrier is given by the group velocity: \(v = \hbar^{-1} \partial \varepsilon/\partial k\), we get

    \[ v = \frac{3}{2}\frac{\beta a_{0}}{\hbar} \nonumber \]

    For \(a_{0} = 1.42\AA\) and \(\beta = 2.5\ eV\), \(v = 10^{6}\ m/s\)

    Now, for carbon nanotubes, the periodic boundary condition on the circumfrence is

    \[ {\bf{\kappa + K}\cdot w} = 2\pi l, l \in \mathbb{Z} \nonumber \]

    Let's consider each K point in turn:

    For \({\bf{K}}= \left( \frac{4\pi}{3\sqrt{3}a_{0}}, 0 \right)\)

    \[ {\bf{(\kappa + K})\cdot w} = {\bf{\kappa \cdot w + K \cdot}}(n {\bf{\tilde{a_{1}}}}+m{\bf{\tilde{a_{2}}}}) \\
    = {\bf{\kappa \cdot w}} + n{\bf{K \cdot}} \left( -\frac{\sqrt{3}}{2}a_{0}, \frac{3}{2}a_{0} \right)+m{\bf{K \cdot}} \left( \frac{\sqrt{3}}{2}a_{0}, \frac{3}{2}a_{0} \right) \\
    = {\bf{\kappa \cdot w}} + \frac{2\pi}{3} (m-n) \nonumber \]

    Rearranging gives:

    \[ {\bf{\kappa \cdot w}} = 2\pi l + 2\pi \frac{(n-m)}{3} \nonumber \]

    For \({\bf{K}}= \left( \frac{2\pi}{3\sqrt{3}a_{0}}, \frac{2\pi}{3a_{0}} \right)\)

    \[ {\bf{\kappa \cdot w}}= 2\pi l + 2\pi \frac{(2n+m)}{3} \\
    =2\pi l + 2\pi \frac{(3n-(n-m))}{3} \\
    \equiv 2\pi l - 2\pi \frac{(n-m)}{3} \nonumber \]

    For \({\bf{K}}= \left( -\frac{2\pi}{3\sqrt{3}a_{0}}, \frac{2\pi}{3a_{0}} \right)\)

    \[ {\bf{\kappa \cdot w}}= 2\pi l + 2\pi \frac{(n+2m)}{3} \\
    =2\pi l + 2\pi \frac{((n-m)+3m))}{3} \\
    \equiv 2\pi l + 2\pi \frac{(n-m)}{3} \nonumber \]

    The other K points follow by symmetry, and we can conclude that

    \[ {\bf{\kappa}}_{\perp} = \frac{2\pi}{|{\bf{w}}|} \left( l + \frac{(n-m)}{3} \right) \nonumber \]

    where we have separated \(\kappa\) into two components parallel, \(\kappa_{\parallel}\), and perpendicular, \kappa_{\perp} to the tube axis. From Equation (6.19.6) we get

    \[ \varepsilon = \alpha \pm \frac{3\beta a_{0}}{d} \sqrt{\left( l + \left( \frac{n-m}{3} \right) \right)^{2}+ \left( \frac{\kappa_{\parallel}d}{2} \right)^{2}} . \nonumber \]

    where the tube circumference is \(|{\bf{w}}| = \pi d\). Interestingly, Eq. (6.98) predicts that tubes are metallic when \([(n-m)/3] \in \mathbb{Z}\). Assuming that n and m are generated randomly, we expect that 1/3 of tubes should be metallic. Indeed, this seems to be the case in practice. Note also that for semiconducting tubes the band gap is inversely proportional to the tube diameter.

    Screenshot 2021-05-26 at 13.53.13.png
    Figure \(\PageIndex{1}\): Approximate band structures for metallic and semiconducting zigzag tubes.

    6.20: Analytic approximations for the bandstructure of graphene and carbon nanotubes is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?