Skip to main content
Engineering LibreTexts

2.8: Two-Conductor Transmission Lines

  • Page ID
    41022
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Nearly every two-conductor transmission line supports EM fields at frequencies down to DC. As a result, such lines can usually be characterized at DC and the properties of the lines will be essentially the same at RF frequencies. In the following, the characteristic impedances of the most common types of two-conductor lines are presented. For all of these lines the phase constant is the same as it would be in the medium without conductors (i.e., \(\beta =\omega\sqrt{\mu\varepsilon}\)). The characteristic impedances are modifications of the freespace wave impedance \(\eta_{0} =\sqrt{\mu_{0}/\varepsilon_{0}} = 120\pi\:\Omega = 376.73\:\Omega\). The properties of many other transmission lines are given in [8].


    clipboard_ed2518ad28d6accfd56a2fa38123a5d12.png

    Figure \(\PageIndex{1}\): Coaxial line

    \[\label{eq:1}Z_{0}=\frac{\eta_{0}}{2\pi}\sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}\ln\left(\frac{b}{a}\right)=60\sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}\ln\left(\frac{b}{a}\right) \]

    Exact. See derivation in Section 2.9.


    clipboard_ecd7a372db06edd9fc047813742655dda.png

    Figure \(\PageIndex{2}\): Square coaxial line

    \[\label{eq:2}Z_{0}\approx\eta_{0}\sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}\left[4\left(\frac{2a}{b-a}+0.558\right)\right]^{-1} \]

    Typical accuracy: \(<1\%\) for \(b/a\leq 4\). Reference [9].


    clipboard_eb679aaf529f39de577909f2b91f7286d.png

    Figure \(\PageIndex{3}\): Rectangular coaxial line

    \[\label{eq:3}Z_{0}=\frac{\eta_{0}}{4}\sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}\left(\frac{\omega}{b-t}+\frac{1}{\pi}\left\{\frac{b}{b-t}\ln\left(\frac{2b-t}{t}\right)+\ln\left[\frac{t(2b-t)}{(b-t)^{2}}\right]\right\}\frac{\ln[1+\coth(\pi g/b)]}{\ln 2}\right)^{-1} \]

    Typical accuracy: \(1\%\). References [10, 11, 12].


    clipboard_e6e77a3bdee11e644ab8f43d673706ace.png

    Figure \(\PageIndex{4}\): Rectangular coaxial line, thin strip \(t\to 0\)

    \[\label{eq:4}Z_{0}=\frac{\eta_{0}}{4}\sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}\left\{\frac{\omega}{b}+\frac{2}{\pi}\ln\left[1+\coth\left(\frac{\pi g}{b}\right)\right]\right\}^{-1} \]

    Typical accuracy: \(1\%\). Reference [10].


    clipboard_ed8c0428212b5da34e193435111070d78.png

    Figure \(\PageIndex{5}\): Square coax with circular inner conductor

    \[\label{eq:5}Z_{0}=\frac{\eta_{0}}{2\pi}\sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}\ln\left(\frac{1.0787b}{a}\right) \]

    Typical accuracy: \(1.5\%\). References [8, 13, 14, 15].


    clipboard_ea94f56cfb2d848f7bcb2ea2ca908d681.png

    Figure \(\PageIndex{6}\): Parallel wires

    \[\label{eq:6}Z_{0}=\frac{\eta_{0}}{\pi}\sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}\text{arccosh}\left(\frac{b}{a}\right) \]

    Typical accuracy: \(1\%\). References [16, 17].


    clipboard_e1a806ddd5f33ff9ce020862e35bdfc6e.png

    Figure \(\PageIndex{7}\): Slab line

    \[\label{eq:7}Z_{0}=15\sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}\ln\left[1+1.314g+\sqrt{(1.314g)^{2}+2g}\right]\quad\text{where }g=(b/a)^{4}-1 \]

    Typical accuracy: \(0.5\%\). Reference [18].


    clipboard_ec8174ec79ddc31d445c138b295b62393.png

    Figure \(\PageIndex{8}\): Twisted pair with \(T\) twists per unit length

    \[\begin{align}\label{eq:8}Z_{0}&=\frac{\eta_{0}}{\pi}\sqrt{\frac{\mu_{r}}{\varepsilon_{e}}}\text{arccosh}\left(\frac{b}{a}\right) \\ \varepsilon_{e}&=1+q(\varepsilon_{r}-1),\: q=0.25+0.0004\Theta^{2} \\ T&=\frac{\tan\Theta}{\pi D}\text{ so }\Theta -\arctan(T\pi D)\nonumber\end{align} \nonumber \]

    Typical accuracy: \(1\%\). Reference [19].


    Characteristics of two-conductor transmission lines.


    This page titled 2.8: Two-Conductor Transmission Lines is shared under a not declared license and was authored, remixed, and/or curated by Michael Steer.

    • Was this article helpful?