Skip to main content
Engineering LibreTexts

6.13: References

  • Page ID
    46137
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    [1] S. Maas, Microwave Mixers. Artech House, 1986.

    [2] M. Steer and P. Khan, “An algebraic formula for the output of a system with large-signal, multifrequency excitation,” Proc. of the IEEE, vol. 71, no. 1, pp. 177–179, 1983.

    [3] R. Pettai, Noise in Receiving Systems. John Wiley & Sons, 1996.

    [4] N. Carvalho, J. Pedro, W. Jang, and M. Steer, “Nonlinear simulation of mixers for assessing system-level performance,” Int. J. Microwave Millimeter Wave Computer Aided Engineering, vol. 15, no. 4, pp. 350–361, Jul. 2005.

    [5] B. Gilbert, “A precise four-quadrant multiplier with subnanosecond response,” IEEE J. Solid-State Circuits, vol. 3, no. 4, pp. 365–373, Dec. 1968.

    [6] X. Yang, A. Davierwalla, D. Mann, and K. Gard, “A 90nm CMOS direct conversion transmitter for WCDMA,” in 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2007, pp. 17–20.

    [7] X. Yang, “90nm cmos transmitter design for WCDMA,” Ph.D. dissertation, North Carolina State University, 2009.

    [8] M. Ding, K. Gard, and M. Steer, “A highly linear and efficient CMOS RF power amplifier with a new circuit synthesis technique,” IEEE Trans. on Microwave Theory and Techniques, vol. 60, no. 8, pp. 1–2, Nov. 2012.

    [9] M. Steer, Microwave and RF Design, Amplifiers and Oscillators, 3rd ed. North Carolina State University, 2019.

    [10] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. of the IEEE, vol. 54, no. 2, pp. 329–330, Feb. 1966.

    [11] A. Hajimiri and T. Lee, “Design issues in cmos differential lc oscillators,” IEEE J. of Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.

    [12] P. Kinget, Integrated GHz Voltage Controlled Oscillators. Kluwer, 1999.

    [13] A. Victor and M. Steer, “Reflection coefficient shaping of a 5-GHz voltage-tuned oscillator for improved tuning,” IEEE Trans. on Microwave Theory and Techniques, vol. 55, no. 12, pp. 2488–2494, Dec. 2007.

    [14] S.-S. Myoung and J.-G. Yook, “Low-phasenoise high-efficiency MMIC VCO based on InGaP/GaAs HBT with the LC filter,” Microwave and Optical Technology Letters, vol. 44, no. 1, pp. 123–126, Jan. 2005.

    [15] C.-H. Lee, S. Han, B. Matinpour, and J. Laskar, “A low phase noise X-band MMIC GaAs MESFET VCO,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 8, pp. 325– 327, Aug. 2000.

    [16] Z. Cheng, Y. Cai, J. Liu, Y. Zhou, K. Lau, and K. Chen, “A low phasenoise X-band MMIC VCO using highlinearity and low-noise composite-channel \(\text{Al}_{0.3}\text{Ga}_{0.7}\text{N}/\text{Al}_{0.05}\text{Ga}_{0.95}\text{N}/\text{Ga}\text{N}\) hemts,” IEEE Trans. on Microwave Theory and Techniques, vol. 55, no. 1, pp. 23–29, Jan. 2007.

    [17] H. Zirath, R. Kozhuharov, and M. Ferndahl, “Balanced colpitt oscillator mmics designed for ultra-low phase noise,” IEEE J. of SolidState Circuits, vol. 40, no. 10, pp. 2077–2086, Oct. 2005.

    [18] Y.-K. Chu and H.-R. Chuang, “A fully integrated 5.8-GHz U-NII band 0.18–µ;m CMOS VCO,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 7, pp. 287–289, Jul. 2003.

    [19] C. Meng, Y. Chang, and S. Tseng, “4.9- GHz low-phase-noise transformer-based superharmonic-coupled GaInP/GaAs HBT QVCO,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 6, pp. 339–341, Jun. 2006.

    [20] C. Meng, C. Chen, Y. Chang, and G. Huang, “\(5.4\text{ ghz}-127\text{ dbc/hz}\) at \(1\text{ MHz}\) GaInP/GaAs HBT quadrature VCO using stacked transformers,” Electronics Letters, vol. 41, no. 16, pp. 33–34, Aug. 2005.

    [21] T. Hancock and G. Rebeiz, “A novel superharmonic coupling topology for quadrature oscillator design at \(6\text{ ghz}\),” in 2004 IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Digest of Papers, Jun. 2004, pp. 285–288.

    [22] S.-W. Yoon, S. Pinel, and J. Laskar, “A 0.35- µm CMOS 2-GHz VCO in wafer-level package,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 4, pp. 229–231, Apr. 2005.

    [23] J.-H. Yoon, S.-H. Lee, A.-R. Koh, G. Kennedy, P. Gary, and N.-Y. Kim, “Optimized phase noise of LC VCO using an asymmetric-inductance tank in InGaP/GaAs HBT technology,” Microwave and Optical Technology Letters, vol. 48, no. 6, pp. 1035–1040, Jun. 2006.

    [24] O. Esame, I. Tekin, A. Bozkurt, and Y. Gurbuz, “Design of a \(4.2–5.4\text{ GHz}\) differential LC VCO using \(0.35\:\mu\text{m}\) SiGe BiCMOS technology for ieee 802.11a applications,” Int. J. of RF and Microwave Computer-Aided Engineering, vol. 17, no. 2, pp. 243–251, 2007.

    [25] A. Maas and F. van Vliet, “A low-noise Xband microstrip VCO with \(2.5\text{ GHz}\) tuning range using a GaN-on-SiC p-HEMT,” in 2005 European Gallium Arsenide and Other Semiconductor Application Symp., (EGAAS 2005), Oct. 2005, pp. 1805–1808.

    [26] J.-H. Yoon, S.-H. Lee, A.-R. Koh, B. Shrestha, S.-H. Cheon, G. Kennedy, and N.-Y. Kim, “A novel harmonic noise frequency filtering VCO for optimizing phase noise,” in 2006 IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2006, pp. 1805–1808.

    [27] C. Meng, S. Tseng, Y. Chang, J. Su, and G. Huang, “\(4-\text{GHz}\) low-phase-noise transformer-based top-series GaInP/GaAs HBT QVCO,” in 2006 IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2006, pp. 1809–1812.

    [28] P. Andreani and X. Wang, “On the phasenoise and phase-error performances of multiphase lc cmos vcos,” IEEE J. of Solid-State Circuits, vol. 39, no. 11, pp. 1883–1893, Nov. 2004.

    [29] P. Vancorenland and M. Steyaert, “A \(1.57\text{ GHz}\) fully integrated very low phase noise quadrature vco,” in 2001 Symp. on VLSI Circuits Dig. of Technical Papers, 2001, pp. 111– 114.

    [30] S. Gierkink, S. Levantino, R. Frye, and V. Boccuzzi, “A low-phase-noise \(5\text{ GHz}\) quadrature CMOS VCO using common-mode inductive coupling,” in Proc. of the 28th European SolidState Circuits Conf., (ESSCIRC 2002), Sep. 2002, pp. 539–542.

    [31] J. Savoj and B. Razavi, “A \(10-\text{gb/s}\) cmos clock and data recovery circuit with a half-rate binary phase/frequency detector,” IEEE J. of Solid-State Circuits, vol. 38, no. 1, pp. 13–21, Jan. 2003.

    [32] H. Johansson, “A simple precharged cmos phase frequency detector,” IEEE J. of SolidState Circuits, vol. 33, no. 2, pp. 295–299, Feb. 1998.

    [33] A. Raisanen, “Frequency multipliers for millimeter and submillimeter wavelengths,” Proc. of the IEEE, vol. 80, no. 11, pp. 1842– 1852, Nov. 1992.

    [34] D. Holcomb, “Parametric frequency multiplier,” US Patent US Patent 3 076 133, Jan. 29, 1963.

    [35] M. Tiebout, “A cmos direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. of SolidState Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.

    [36] M. Odyniec, Ed., RF and Microwave Oscillator Design. Artech House, 2002.

    [37] M. Shur, GaAs Devices and Circuits. Springer, 1987.

    [38] K. Ng, Complete Guide to Semiconductor Devices. Wiley, 2002.

    [39] U. Mishra and J. Singh, Semiconductor Devices: Physics and Technology. John Wiley & Sons, 2008.

    [40] ——, Semiconductor Device Physics and Design. Springer, 2007.

    [41] B. B. Streetman and S. Banerjee, Solid State Electronic Devices, 6th ed. Prentice Hall, 2006.

    [42] S. Sze and K. Ng, Physics of Semiconductor Devices, 3rd ed. John Wiley & Sons, 2007.

    [43] W. Chow, Principles of Tunnel Diode Circuits. Wiley, 1964.

    [44] L. Esaki, “Discovery of the tunnel diode,” IEEE Trans. on Electron Devices, vol. 23, no. 7, pp. 644–647, 1976.

    [45] K. Ng, Complete Guide to Semiconductor Devices. Wiley, 2002, ch. Tunnel diode.

    [46] D. Schroder, Semiconductor Material and Device Characterization. IEEE Press and Wiley, 2006.

    [47] T. Midford and R. Bernick, “Millimeter-wave cw impatt diodes and oscillators,” IEEE Trans. on Microwave Theory and Techniques, vol. 27, no. 5, pp. 483–492, May 1979.

    [48] H. Xu, M. Morschbach, J. Werner, and E. Kasper, “Monolithic integrated oscillator with silicon impatt diode for automotive radar applications,” in European Microwave Integrated Circuit Conference, 2008, Oct. 2008, pp. 20–23.

    [49] P. Mukherjee and B. Gupta, “Terahertz (\(\text{thz}\)) frequency sources and antennas—a brief review,” Int. J. Infrared and Millimeter Waves, vol. 29, no. 12, pp. 1091–1102, 2008.

    [50] M.-S. Gupta, R. Lomax, and G. Haddad, “Noise considerations in self-mixing impattdiode oscillators for short-range doppler radar applications,” IEEE Trans. on Microwave Theory and Techniques, vol. 22, no. 1, pp. 37– 43, Jan. 1974.

    [51] W. Evans and G. Haddad, “A large signal analysis of impatt diodes,” IEEE Trans. on Electron Devices, vol. 15, no. 10, pp. 708–717, Oct. 1968.

    [52] K. Kurokawa and F. Magalhaes, “An X-band \(10\)-watt multiple-impatt oscillator,” Proc. of the IEEE, vol. 59, no. 1, pp. 102–103, Jan. 1971.

    [53] M.-S. Gupta, “Large-signal equivalent circuit for impatt-diode characterization and its application to amplifiers,” IEEE Trans. on Microwave Theory and Techniques, vol. 21, no. 11, pp. 689–694, Nov. 1973.

    [54] H. Eisele, A. Rydberg, and G. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the \(100-300-\text{GHz}\) frequency range and above,” IEEE Trans. on Microwave Theory and Techniques, vol. 48, no. 4, pp. 626–631, Apr. 2000.

    [55] J.-I. Nishizawa, T. Kurabayashi, Y. Miura, T. Sawai, P. Plotka, and M. Watenabe, “Development of sub-thz tunnett diode for biomedical imaging,” in Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics. IRMMWTHz. Joint 32nd International Conference on, Sep. 2007, pp. 150–151.

    [56] J. DeLoach, B.C. and D. Scharfetter, “Device physics of trapatt oscillators,” IEEE Trans. on Electron Devices, vol. 17, no. 1, pp. 9–21, Jan. 1970.

    [57] B. Bosch and R. Engelmann, The Gunn Effect. Clarendon Press, 1974.

    [58] G. Hobson, The Gunn Effect. Clarendon Press, 1974.

    [59] H. Eisele, “\(480\text{ GHz}\) oscillator with an InP Gunn device,” Electronics Letters, vol. 46, no. 6, pp. 422–423, Mar. 2010.

    [60] F. Amir, C. Mitchell, N. Farrington, and M. Missous, “Advanced Gunn diode as high power terahertz source for a millimetre wave high power multiplier,” Proc. SPIE, vol. 7485, pp. 74 850I–74 850I–11, Sep. 2009.

    [61] E. Alekseev, A. Eisenbach, D. Pavlidis, S. Hubbard, and W. Sutton, “Development of GaN-based Gunn-effect millimeter-wave sources,” Scientific Common, 2010. [Online]. Available: www.scientificcommons. org/54287276.

    [62] N. Alekseev, D. Malairov, and I. Bensen, “Generation of high-power oscillations with a magnetron in the centimeter band,” Proc. of the IRE, vol. 32, no. 3, pp. 136–139, Mar. 1944.

    [63] J. Osepchuk, “The magnetron and the microwave oven: A unique and lasting relationship,” in 2010 Int. Conf. on the Origins and Evolution of the Cavity Magnetron (CAVMAG), Apr. 2010, pp. 46–51.

    [64] Gil Wong Choi, Hae Jin Kim, Hyoung-Jong Kim, and Jin-Joo Choi, “The self-injectionlocked magnetron,” in 2008 IEEE International Vacuum Electronics Conference (IVEC 2008), Apr. 2008, pp. 445–446.

    [65] T. Fleming, M. Lambrecht, and P. Mardahl, “Design and simulation of a mega-watt class nonrelativistic magnetron,” IEEE Trans. on Plasma Science, vol. 40, no. 6, pp. 1563–1568, Jun. 2012.

    [66] G. Caryotakis, “The klystron: A microwave source of surprising range and endurance,” Physics of Plasmas, vol. 5, no. 5, pp. 1590–1598, Apr. 1998.

    [67] A. M. Sessler and S. S. Yu, “Relativistic klystron two-beam accelerator,” Phys. Rev. Lett., vol. 58, pp. 2439–2442, Jun. 1987.

    [68] K. Hendricks, P. Coleman, R. Lemke, M. Arman, and L. Bowers, “Extraction of 1 gw of RF power from an injection locked relativistic klystron oscillator,” Phys. Rev. Lett., vol. 76, pp. 154–157, Jan. 1996.

    [69] C. Beard, “Review of available power sources,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 557, no. 1, pp. 276–279, Feb. 2006.

    [70] J. Pierce, “Theory of the beam-type travelingwave tube,” Proc. of the IRE, vol. 35, no. 2, pp. 111–123, Feb. 1947.

    [71] Young-Min Shin, L. Barnett, and N. Luhmann, “Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation,” IEEE Trans. on Electron Devices, vol. 56, no. 5, pp. 706–712, Mar. 2009.

    [72] S. Bhattacharjee, J. Booske, C. Kory, D. van der Weide, S. Limbach, S. Gallagher, J. Welter, M. R. Lopez, R. Gilgenbach, R. L. Ives, M. E. Read, R. Divan, and D. Mancini, “Folded waveguide traveling-wave tube sources for terahertz radiation,” IEEE Trans. on Plasma Science, vol. 32, no. 3, pp. 1002–1014, Jun. 2004.

    [73] W. Menninger, N. Robbins, D. Dibb, and D. Lewis, “Power flexible ka-band traveling wave tube amplifiers of up to 250-W RF for space communications,” IEEE Trans. on Electron Devices, vol. 54, no. 2, pp. 181–187, Feb. 2007.

    [74] J. Neilson, R. Ives, M. Caplan, M. Mizuhara, D. Marsden, and C. Kory, “High efficiency, terahertz, backward wave oscillators,” in The 29th IEEE International Conference on Plasma Science (ICOPS 2002), 2002, p. 171.

    [75] R. Grow, J. Baird, K. Bunch, and R. C. Freudenberger, “Backward-wave oscillators for the frequency range from \(300\text{ GHz}\) to \(1\text{ THz}\),” in 2000 Int. Vacuum Electronics Conference,, 2000.


    6.13: References is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?