Skip to main content
Engineering LibreTexts

3.10: References

  • Page ID
    46032
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    [1] R.-C. Liu, K.-L. Deng, and H. Wang, “A \(0.6- 22\text{-GHz}\) broadband cmos distributed amplifier,” in 2003 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2003, pp. 103–106.

    [2] J. Beyer, S. Prasad, R. Becker, J. Nordman, and G. Hohenwarter, “MESFET distributed amplifier design guidelines,” IEEE Trans. on Microwave Theory and Techniques, vol. 32, no. 3, pp. 268–275, Mar. 1984.

    [3] M.-D. Tsai, H. Wang, J.-F. Kuan, and C.- S. Chang, “A \(70\text{ GHz}\) cascaded multi-stage distributed amplifier in \(90\text{ nm}\) cmos technology,” in 2005 IEEE Int. Solid-State Circuits Conf., 2005. Dig. of Technical Papers, Feb. 2005, pp. 402–606.

    [4] R. Bhatia, J. Gerber, and T. Kwan, “Analyze large signal distributed amps with nonlinear cae,” Microwaves and RF, pp. 121–129, Nov. 1989.

    [5] R. Gilmore and M. Steer, “Nonlinear circuit analysis using the method of harmonic balance—a review of the art: part i, introductory concepts,” Int. J. on Microwave and Millimeter Wave Computer Aided Engineering, vol. 1, pp. 22–37, Jan. 1991.

    [6] M. Steer, Microwave and RF Design, Networks, 3rd ed. North Carolina State University, 2019.

    [7] ——, Microwave and RF Design, Transmission Lines, 3rd ed. North Carolina State University, 2019.

    [8] W. Fathelbab and M. Steer, “Broadband network design,” in Multifunctional Adaptive Microwave Circuits and Systems, M. Steer and W. Palmer, Eds., 2008, ch. 8.

    [9] ——, “Distributed biasing of differential RF circuits,” IEEE Trans. on Microwave Theory and Techniques, vol. 52, no. 5, pp. 1565–1572, May 2004.

    [10] P. Gray, P. Hurst, S. Lewis, and R. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed. Wiley, 2001.

    [11] B. Gilbert, “The multi-tanh principle: a tutorial overview,” IEEE J. of Solid-State Circuits, vol. 33, no. 1, pp. 2–17, Jan. 1998.

    [12] X. Yang, A. Davierwalla, D. Mann, and K. Gard, “A \(90\text{ nm}\) CMOS direct conversion transmitter for WCDMA,” in 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2007, pp. 17–20.

    [13] T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press, 2004.

    [14] R. Baker, CMOS Circuit Design, Layout, and Simulation, 2nd ed. Wiley-Interscience, IEEE Press, 2008.

    [15] A. Aktas and M. Ismail, CMOS PLLs and VCOs for 4G wireless. Kluwer, 2004.

    [16] D. Pederson and K. Mayaram, Analog Integrated Circuits for Communication: Principles, Simulation and Design. Springer, 2008.

    [17] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill, 2001.

    [18] L. Dai and R. Harjani, Design of High Performance CMOS Voltage-Controlled Oscillators. Kluwer Academic Publishers, 2003.

    [19] B. Leung, VLSI for Wireless Communications. Prentice Hall, 2002.

    [20] M. Tiebout, Low Power VCO Design in CMOS. Springer, 2006.

    [21] X. Yang, “\(90\text{ nm}\) cmos transmitter design for WCDMA,” Ph.D. dissertation, North Carolina State University, 2009.


    3.10: References is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?