Skip to main content
Engineering LibreTexts

1.5: Representing Complex Numbers in Vector Space

  • Page ID
    9951
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    So far we have coded the complex number \(z=x+jy\) with the Cartesian pair \((x,y)\) and with the polar pair \((r∠θ)\). We now show how the complex number \(z\) may be coded with a two-dimensional vector \(z\) and show how this new code may be used to gain insight about complex numbers.

    Coding a Complex Number as a Vector

    We code the complex number \(z=x+jy\) with the two-dimensional vector \(z=[xy]\):

    \[x + jy = z ⇔ z = [xy] \nonumber \]

    We plot this vector as in Figure. We say that the vector z belongs to a “vector space.” This means that vectors may be added and scaled according to the rules

    \[z_1+z_2=[x_1+x_2y_1+y_2] \nonumber \]

    \[az=\begin{bmatrix}ax\\ay\end{bmatrix} \nonumber \]

    complexVector.PNG
    The Vector z Coding the Complex Number z

    Furthermore, it means that an additive inverse −z, an additive identity 0, and a multiplicative identity 1 all exist

    \[z+(−z)=0 \nonumber \]

    \[lz=z \nonumber \]

    The vector 0 is \(0=\begin{bmatrix}0\\0\end{bmatrix}\)

    Prove that vector addition and scalar multiplication satisfy these properties of commutation, association, and distribution:

    \[z_1+z_2 = z_2+z_1 \nonumber \]

    \[(z_1+z_2)+z_3=z_1+(z_2+z_3) \nonumber \]

    \[a(bz)=(ab)z \nonumber \]

    \[a(z_1+z_2)=az_1+az_2 \nonumber \]

    Inner Product and Norm

    The inner product between two vectors z1 and z2 is defined to be the real number

    \[(z_1,z_2)=x_1x_2+y_1y_2 \nonumber \]

    We sometimes write this inner product as the vector product (more on this in Linear Algebra)

    \[(z_1,z_2) = z^T_1z_2 \nonumber \]

    \[=\begin{bmatrix}x_1 & y_1\\\end{bmatrix}\begin{bmatrix}x_2\\y_2\end{bmatrix}=\Bigl(x_1x_2+y_1y_2\Bigr) \nonumber \]

    Exercise \(\PageIndex{1}\)

    Prove \((z_1,z_2)=(z_2,z_1)\).

    When \(z_1=z_2=z\), then the inner product between \(z\) and itself is the norm squared of \(z\):

    \[||z||^2=(z,z)=x^2+y^2 \nonumber \]

    These properties of vectors seem abstract. However, as we now show, they may be used to develop a vector calculus for doing complex arithmetic.

    A Vector Calculus for Complex Arithmetic

    The addition of two complex numbers \(z_1\) and \(z_2\) corresponds to the addition of the vectors \(z_1\) and \(z_2\):

    \[z_1+z_2⇔z_1+z_2=\begin{bmatrix}x_1+x_2\\y_1+y_2\end{bmatrix} \nonumber \]

    The scalar multiplication of the complex number \(z_2\) by the real number \(x_1\) corresponds to scalar multiplication of the vector \(z_2\) by \(x_1\)

    \[x_1z_2⇔x_1\begin{bmatrix}x_2\\y_2\end{bmatrix}=\begin{bmatrix}x_1x_2\\x_1y_2\end{bmatrix} \nonumber \]

    Similarly, the multiplication of the complex number \(z_2\) by the real number \(y_1\) is

    \[y_1z_2⇔y_1\begin{bmatrix}x_2\\y_2\end{bmatrix}=\begin{bmatrix}y_1x_2\\y_1y_2\end{bmatrix} \nonumber \]

    The complex product \(z_1z_2 = (x_1+jy_1)z_2\) is therefore represented as

    \[z_1z_2↔\begin{bmatrix}x_1x_2−y_1y_2\\x_1y_2+y_1x_2\end{bmatrix} \nonumber \]

    This representation may be written as the inner product

    \[z_1z_2=z_2z_1↔\begin{bmatrix}(v,z_1)\\(w,z_1)\end{bmatrix} \nonumber \]

    where v and w are the vectors \(v=\begin{bmatrix}x_2\\−y_2\end{bmatrix}\) and \(w=\begin{bmatrix}y_2\\x_2\end{bmatrix}\). By defining the matrix

    \[\begin{bmatrix}x_2 & −y_2\\y_2 & x_2\end{bmatrix} \nonumber \]

    we can represent the complex product \(z_1z_2\) as a matrix-vector multiply (more on this in Linear Algebra):

    \[z_1z_2= z_2z_1 ↔\begin{bmatrix}x_2 & −y_2\\y_2 & x_2\end{bmatrix}\begin{bmatrix}x_1\\y_1\end{bmatrix} \nonumber \]

    With this representation, we can represent rotation as

    \[ze^{jθ}= e^{jθ}z ↔\begin{bmatrix}\cosθ & −\sinθ\\\sinθ & \cosθ\end{bmatrix}\begin{bmatrix}x_1\\y_1\end{bmatrix} \nonumber \]

    We call the matrix \(\begin{bmatrix}\cosθ & −\sinθ\\\sinθ & \cosθ\end{bmatrix}\) a “rotation matrix.”

    Exercise \(\PageIndex{2}\)

    Call \(\mathrm R (θ)\) the rotation matrix:

    \[\mathrm R (θ)=\begin{bmatrix}\cosθ & −\sinθ\\\sinθ & \cosθ\end{bmatrix} \nonumber \]

    Show that \(\mathrm R (−θ)\) rotates by \((−θ)\). What can you say about \(\mathrm R (−θ)w\) when \(w=\mathrm R (θ)z\)?

    Exercise \(\PageIndex{3}\)

    Represent the complex conjugate of \(z\) as

    \[z^∗↔\begin{bmatrix}a & b\\c & d\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} \nonumber \]

    and find the elements \(a,b,c,\) and \(d\) of the matrix.

    Inner Product and Polar Representation

    From the norm of a vector, we derive a formula for the magnitude of z in the polar representation \(z=re^{jθ}\)

    \[r=(x^2+y^2)^{1/2} = ||z|| = (z,z)^{1/2} \nonumber \]

    If we define the coordinate vectors \(e_1=\begin{bmatrix}1\\0\end{bmatrix}\) and \(e_2=\begin{bmatrix}0\\1\end{bmatrix}\), then we can represent the vector \(z\) as

    \[z=(z,e_1)e_1 + (z,e_2)e_2 \nonumber \]

    See Figure. From the figure it is clear that the cosine and sine of the angle \(θ\) are

    \[\cosθ=\frac {(z,e1)} {||z||};\; \sinθ = \frac {(z,e_2)} {||z||} \nonumber \]

    zNaturalBasis.PNG
    Representation of z in its Natural Basis

    This gives us another representation for any vector z:

    \[z=||z||\cosθe_1+||z||\sinθe_2 \nonumber \]

    The inner product between two vectors \(z_1\) and \(z_2\) is now

    \[(z_1,z_2)=[(z_1,e_1)e^T_1(z_1,e_2)e^T_2]\begin{bmatrix}(z_2,e_1)e_1\\(z_2,e_2)e_2\end{bmatrix} \nonumber \]

    \[=(z_1,e_1)(z_2,e_1)+(z_1,e_2)(z_2,e_2) \nonumber \]

    \[=||z_1||cosθ_1||z_2||cosθ_2+||z_1||sinθ_1||z2||sinθ_2 \nonumber \]

    It follows that \(\cos(θ_2−θ_1)=\cosθ_2 \cos θ_1+\sinθ_1\sinθ_2\) may be written as

    \[\cos(θ_2−θ_1)=\frac {(z_1,z_2)} {||z_1||\,||z_2||} \nonumber \]

    This formula shows that the cosine of the angle between two vectors \(z_1\) and \(z_2\), which is, of course, the cosine of the angle of \(z_2z^∗_1\), is the ratio of the inner product to the norms.

    Exercise \(\PageIndex{4}\)

    Prove the Schwarz and triangle inequalities and interpret them:

    \[(\mathrm {Schwarz})\; (z_1,z_2)^2≤||z_1||^2||z_2||^2 \nonumber \]
    \[(\mathrm {Triangle})\; I\,||z_1−z_2||≤||z_1−z_3||+||z_2−z_3|| \nonumber \]


    This page titled 1.5: Representing Complex Numbers in Vector Space is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Louis Scharf (OpenStax CNX) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.