4.6: Other Norms
- Page ID
- 9973
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Sometimes we find it useful to use a different definition of distance, corresponding to an alternate norm for vectors. For example, consider the l-norm defined as
\[||x||_1=(|x_1|+|x_2|+⋯+|x_n|) \nonumber \]
where \(|x_i|\) is the magnitude of component \(x_i\). There is also the sup-norm, the “supremum” or maximum of the components \(x_1,...,x_n\) :
\[||x||_{\mathrm{sup}}=\mathrm{max}(|x_1|,|x_2|,...,|x_n|) \nonumber \]
The following examples illustrate what the Euclidean norm, the l-norm, and the sup-norm look like for typical vectors
Consider the vector \(x=\begin{bmatrix} −3\\1\\2 \end{bmatrix}\). Then
- \(||x||=[(−3)^2+(1)^2+(2)^2]^{1/2}=(14)^{1/2}\)
- \(||x||_1=(|−3|+|1|+|2|)=6\)
- \(||x||_{\mathrm{sup}}=\mathrm{max}(|−3|,|1|,|2|)=3\)
Figure \(\PageIndex{1}\) shows the locus of two-component vectors \(x=\begin{bmatrix}x_1\\x_2\end{bmatrix}\) with the property that \(||x||=1\),\(||x||_1=1\), or \(||x||_{\mathrm{sup}}=1\).
The next example shows how the l-norm is an important part of city life.
The city of Metroville was laid out by mathematicians as shown in Figure \(\PageIndex{2}\). A person at the intersection of Avenue 0 and Street −2 (point A) is clearly two blocks from the center of town (point C). This is consistent with both the Euclidean norm
\[||A||=\sqrt{0^2+(−2)^2}=\sqrt{4}=2 \nonumber \]
and the l-norm
\[||A||_1=(|0|+|−2|)=2 \nonumber \]
But how far from the center of town is point B at the intersection of Avenue-2 and Street 1? According to the Euclidean norm, the distance is
\[||B||=\sqrt{(−2)^2+(1)^2}=\sqrt{5} \nonumber \]
While it is true that point B is \(\sqrt{5}\) blocks from C, it is also clear that the trip would be three blocks by any of the three shortest routes on roads. The appropriate norm is the l-norm:
\[∣1^B||_1=(|−2|+|1|)=3 \nonumber \]
Even more generally, we can define a norm for each value of p from 1 to infinity. The so-called p-norm is
\[|Ix||_p=(|x_1∣∣^p+|x_2∣∣^p+⋯+|x_n|^p)^{1/p} \nonumber \]
Exercise \(\PageIndex{1}\)
Show that the Euclidean norm is the same as the p-norm with p=2 and that the 1-norm is the p-norm with p=1. (It can also be shown that the sup-norm is like a p-norm with p=∞.)
DEMO 4.1 (MATLAB)
From the command level of MATLAB, type the following lines:
>> x = [1;3;-2;4] >> y = [0;1;2;-0.5] >> x - y
Check to see whether the answer agrees with the definition of vector subtraction. Now type
>> a = -1.5 >> a * x
Check the answer to see whether it agrees with the definition of scalar multiplication. Now type
>> x' * y
This is how MATLAB does the inner product. Check the result. Type
>> norm(y) >> sqrt(y' * y)
>> norm(y,1) >> norm(y' * y)
Now type your own MATLAB expression to find the cosine of the angle between vectors x and y. Put the result in variable t. Then find the angle θ by typing
>> theta = acos(t)
The angle θ is in radians. You may convert it to degrees if you wish by multiplying it by \(180/π\):
>> theta = theta * (180/pi)