# 4.6: Other Norms

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Sometimes we find it useful to use a different definition of distance, corresponding to an alternate norm for vectors. For example, consider the l-norm defined as

$||x||_1=(|x_1|+|x_2|+⋯+|x_n|) \nonumber$

where $$|x_i|$$ is the magnitude of component $$x_i$$. There is also the sup-norm, the “supremum” or maximum of the components $$x_1,...,x_n$$ :

$||x||_{\mathrm{sup}}=\mathrm{max}(|x_1|,|x_2|,...,|x_n|) \nonumber$

The following examples illustrate what the Euclidean norm, the l-norm, and the sup-norm look like for typical vectors

##### Example $$\PageIndex{1}$$

Consider the vector $$x=\begin{bmatrix} −3\\1\\2 \end{bmatrix}$$. Then

1. $$||x||=[(−3)^2+(1)^2+(2)^2]^{1/2}=(14)^{1/2}$$
2. $$||x||_1=(|−3|+|1|+|2|)=6$$
3. $$||x||_{\mathrm{sup}}=\mathrm{max}(|−3|,|1|,|2|)=3$$
##### Example $$\PageIndex{2}$$

Figure $$\PageIndex{1}$$ shows the locus of two-component vectors $$x=\begin{bmatrix}x_1\\x_2\end{bmatrix}$$ with the property that $$||x||=1$$,$$||x||_1=1$$, or $$||x||_{\mathrm{sup}}=1$$.

The next example shows how the l-norm is an important part of city life.

##### Example $$\PageIndex{3}$$

The city of Metroville was laid out by mathematicians as shown in Figure $$\PageIndex{2}$$. A person at the intersection of Avenue 0 and Street −2 (point A) is clearly two blocks from the center of town (point C). This is consistent with both the Euclidean norm

$||A||=\sqrt{0^2+(−2)^2}=\sqrt{4}=2 \nonumber$

and the l-norm

$||A||_1=(|0|+|−2|)=2 \nonumber$

But how far from the center of town is point B at the intersection of Avenue-2 and Street 1? According to the Euclidean norm, the distance is

$||B||=\sqrt{(−2)^2+(1)^2}=\sqrt{5} \nonumber$

While it is true that point B is $$\sqrt{5}$$ blocks from C, it is also clear that the trip would be three blocks by any of the three shortest routes on roads. The appropriate norm is the l-norm:

$∣1^B||_1=(|−2|+|1|)=3 \nonumber$

Even more generally, we can define a norm for each value of p from 1 to infinity. The so-called p-norm is

$|Ix||_p=(|x_1∣∣^p+|x_2∣∣^p+⋯+|x_n|^p)^{1/p} \nonumber$

Exercise $$\PageIndex{1}$$

Show that the Euclidean norm is the same as the p-norm with p=2 and that the 1-norm is the p-norm with p=1. (It can also be shown that the sup-norm is like a p-norm with p=∞.)

## DEMO 4.1 (MATLAB)

From the command level of MATLAB, type the following lines:

>> x = [1;3;-2;4]
>> y = [0;1;2;-0.5]
>> x - y

Check to see whether the answer agrees with the definition of vector subtraction. Now type

>> a = -1.5
>> a * x

Check the answer to see whether it agrees with the definition of scalar multiplication. Now type

>> x' * y

This is how MATLAB does the inner product. Check the result. Type

>> norm(y)
>> sqrt(y' * y)
>> norm(y,1)
>> norm(y' * y)

Now type your own MATLAB expression to find the cosine of the angle between vectors x and y. Put the result in variable t. Then find the angle θ by typing

>> theta = acos(t)

The angle θ is in radians. You may convert it to degrees if you wish by multiplying it by $$180/π$$:

>> theta = theta * (180/pi)

This page titled 4.6: Other Norms is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Louis Scharf (OpenStax CNX) via source content that was edited to the style and standards of the LibreTexts platform.