Skip to main content
Engineering LibreTexts

5.5: Homogeneous Coordinates

  • Page ID
    9979
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In the previous section we were able to combine rotation and scaling into a single composite operation by matrix multiplication. Unfortunately, translation cannot yet be included in the composite operator since we do it by addition rather than by multiplication.

    Example \(\PageIndex{1}\)

    Suppose we wish to rotate the image \(G\) by \(\frac{\pi}{3}\) about the point (−10,10). Our rotation matrix R(\(\theta\)) always rotates about the origin, so we must combine three transformations to accomplish this:

    1. translate the point (−10,10) to the origin;
    2. rotate \(\frac{\pi}{3}\) radians about the origin; and
    3. translate the origin back to (−10,10).

    For step (i), we have \(b_{0}=\left[\begin{array}{l}
    10 \\
    -10
    \end{array}\right]\) and

    \[\mathrm{G}_{1}=\mathrm{G}+\mathrm{b}_{0} 1^{T} \nonumber \]

    For step (ii),

    \[\begin{align}
    \mathrm{G}_{2} &=\mathrm{R}\left(\frac{\pi}{3}\right) \mathrm{G}_{1} \nonumber \\
    &=\mathrm{R}\left(\frac{\pi}{3}\right)\left[\mathrm{G}+\mathrm{b}_{0} 1^{T}\right] \nonumber \\
    &=\mathrm{R}\left(\frac{\pi}{3}\right) \mathrm{G}+\mathrm{R}\left(\frac{\pi}{3}\right) \mathrm{b}_{0} 1^{T} .
    \end{align} \nonumber \]

    For step (iii), we can use −\(b_0\) from step (i):

    \[\begin{align}
    \mathrm{G}_{\text {new }} &=\mathrm{G}_{2}-\mathrm{b}_{0} 1^{T} \nonumber \\
    &=\mathrm{R}\left(\frac{\pi}{3}\right) \mathrm{G}+\mathrm{R}\left(\frac{\pi}{3}\right) \mathrm{b}_{0} 1^{T}-\mathrm{b}_{0} 1^{T} \nonumber \\
    &=\mathrm{R}\left(\frac{\pi}{3}\right) \mathrm{G}+\left[\left(\mathrm{R}\left(\frac{\pi}{3}\right)-\mathrm{I}\right) \mathrm{b}_{0}\right] 1^{T} .
    \end{align} \nonumber \]

    In this example we were unable to find a single matrix operator \(A\) to do the entire job. The total transformation took the form

    \[\mathrm{G}_{\text {new }}=\mathrm{AG}+\mathrm{b} 1^{T} \nonumber \]

    This is called an affine transformation because it involves both multiplication by \(A\) and addition of a constant matrix. This is in contrast to the more desirable linear transformation, which involves only multiplication by \(A\).

    We will now move toward a modified representation of the image and the operators by rewriting the last equation as

    \[\mathrm{G}_{\text {new }}=[\mathrm{Ab}]\left[\begin{array}{l}
    \mathrm{G} \\
    1^{T}
    \end{array}\right] \nonumber \]

    where in the example we had \(A = \mathrm{R}\left(\frac{\pi}{3}\right)\) and \(b=\left(\mathrm{R}\left(\frac{\pi}{3}\right)-\mathrm{I}\right) b_{0}\).

    Exercise \(\PageIndex{1}\)

    Show that, for any matrices A,B,C,D of compatible sizes,

    \[\mathrm{AB}+\mathrm{CD}=\left[\begin{array}{ll}
    A & \mathrm{C}
    \end{array}\right]\left[\begin{array}{l}
    \mathrm{B} \\
    \mathrm{D}
    \end{array}\right] \nonumber \]

    The matrix \(\left[\begin{array}{l}
    \mathrm{G} \\
    1^{T}
    \end{array}\right]\) looks like

    \[\left[\begin{array}{lll}
    x_{1} & x_{2} & x_{n} \\
    y_{1} & y_{2} & y_{n} \\
    1 & 1 & 1
    \end{array}\right] \nonumber \]

    and the points \((x_i,y_i,1)\) are called homogeneous coordinates. We can modify Equation 5 so that the new point matrix is also in homogeneous coordinates:

    \[\left[\begin{array}{l}
    \mathrm{G}_{\text {new }} \\
    1^{T}
    \end{array}\right]=\left[\begin{array}{ll}
    \mathrm{A} & \mathrm{b} \\
    \mathrm{O}^{T} & 1
    \end{array}\right]\left[\begin{array}{l}
    \mathrm{G} \\
    1^{T}
    \end{array}\right] \nonumber \]

    In the new representation, each point in the image has a third coordinate, which is always a 1. The homogeneous transformation is a 3×3 matrix,

    \[\mathrm{A}_{h}=\left[\begin{array}{ll}
    \mathrm{A} & \mathrm{b} \\
    0^{T} & 1
    \end{array}\right] \text { , } \nonumber \]

    which is capable of translation, rotation, and scaling all by matrix multiplication. Thus, using homogeneous coordinates, we can build composite transformations that include translation.

    In homogeneous coordinates, we have

    \[\mathrm{R}(\theta)=\left[\begin{array}{lll}
    \cos \theta & -\sin \theta & 0 \\
    \sin \theta & \cos \theta & 0 \\
    0 & 0 & 1
    \end{array}\right] \nonumber \]

    \[\mathrm{S}\left(s_{x}, s_{y}\right)=\left[\begin{array}{lll}
    s_{x} & 0 & 0 \\
    0 & s_{y} & 0 \\
    0 & 0 & 1
    \end{array}\right] \nonumber \]

    \[\mathrm{T}\left(t_{x}, t_{y}\right)=\left[\begin{array}{lll}
    1 & 0 & t_{x} \\
    0 & 1 & t_{y} \\
    0 & 0 & 1
    \end{array}\right] \nonumber \]

    Example \(\PageIndex{2}\)

    The composite transformation to triple the size of an image and then move it 2 units to the left is

    \[\mathrm{A}=\left[\begin{array}{lll}
    1 & 0 & -2 \\
    0 & 1 & 0 \\
    0 & 0 & 1
    \end{array}\right]\left[\begin{array}{lll}
    3 & 0 & 0 \\
    0 & 3 & 0 \\
    0 & 0 & 1
    \end{array}\right]=\left[\begin{array}{lll}
    3 & 0 & -2 \\
    0 & 3 & 0 \\
    0 & 0 & 1
    \end{array}\right] \nonumber \]

    On the other hand, the composite transformation to move an image 2 units to the left and then triple its size is

    \[\mathrm{B}=\left[\begin{array}{lll}
    3 & 0 & 0 \\
    0 & 3 & 0 \\
    0 & 0 & 1
    \end{array}\right]\left[\begin{array}{lll}
    1 & 0 & -2 \\
    0 & 1 & 0 \\
    0 & 0 & 1
    \end{array}\right]=\left[\begin{array}{lll}
    3 & 0 & -6 \\
    0 & 3 & 0 \\
    0 & 0 & 1
    \end{array}\right] \nonumber \]

    In the latter case, the distance of the translation is also tripled.

    Exercise \(\PageIndex{2}\)

    Find a single composite transformation in homogeneous coordinates that rotates an image by angle \(\theta\) about point \((x_i,y_i)\) as in Example 1.


    This page titled 5.5: Homogeneous Coordinates is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Louis Scharf (OpenStax CNX) via source content that was edited to the style and standards of the LibreTexts platform.