Skip to main content
Library homepage
 
Engineering LibreTexts

6.7: Numerical Experiment (Frequency Response of First-Order Filter)

  • Page ID
    10144
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Consider the exponential moving average filter

    \(x_{n}=\sum_{k=0}^{\infty} a^{k} u_{n-k ;} \quad a=0.98\)

    1. Write out a few terms of the sum to show how the filter works.
    2. Write \(x_n\) as a recursion and discuss the computer memory required to implement the filter.
    3. Compute the complex frequency response \(H(e^{j\theta})\) for the filter
    4. Write a MATLAB program to plot the magnitude and phase of the complex frequency response \(H(e^{j\theta})\) versus \(\theta\) for \(\theta =−\pi\) to \(+\pi\) in steps of \(\frac{2\pi}{64}\) Do this for two values of \(a\), namely, \(a=0.98\) and \(a=-0.98\). Explain your findings.
    5. Write a MATLAB program to pass the following signals through the filter when \(a=0.98\):
      1. \(u_{n}=\delta_{n}\)
      2. \(u_{n}=\xi_{n}\)
      3. \(u_{n}=\xi_{n} \cos \frac{2 \pi}{64} n\)
      4. \(u_{n}=\xi_{n} \cos \frac{2 \pi}{32} n\)
      5. \(u_{n}=\xi_{n} \cos \frac{2 \pi}{16} n\)
      6. \(u_{n}=\xi_{n} \cos \frac{2 \pi}{8} n\)
      7. \(u_{n}=\xi_{n} \cos \frac{2 \pi}{4} n\)
      8. \(u_{n}=\xi_{n} \cos \frac{2 \pi}{2} n\)

    Plot the outputs for each case and interpret your findings in terms of the complex frequency response \(H(e^{j\theta})\). Repeat step 5 for \(a=-0.98\). Interpret your findings.


    This page titled 6.7: Numerical Experiment (Frequency Response of First-Order Filter) is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Louis Scharf (OpenStax CNX) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?