# 5.11: Discrete-Time Systems

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

##### Learning Objectives
• Discrete-time calculations are generally easier and more flexible than analog ones, allowing for practical calculation of Fourier transform.

When we developed analog systems, interconnecting the circuit elements provided a natural starting place for constructing useful devices. In discrete-time signal processing, we are not limited by hardware considerations but by what can be constructed in software.

##### Exercise $$\PageIndex{1}$$

One of the first analog systems we described was the amplifier. We found that implementing an amplifier was difficult in analog systems, requiring an op-amp at least. What is the discrete-time implementation of an amplifier? Is this especially hard or easy?

Solution

In discrete-time signal processing, an amplifier amounts to a multiplication, a very easy operation to perform.

In fact, we will discover that frequency-domain implementation of systems, wherein we multiply the input signal's Fourier transform by a frequency response, is not only a viable alternative, but also a computationally efficient one. We begin with discussing the underlying mathematical structure of linear, shift-invariant systems, and devise how software filters can be constructed.

This page titled 5.11: Discrete-Time Systems is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Don H. Johnson via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.