Skip to main content
Engineering LibreTexts

7.2: Permutations and Combinations

  • Page ID
    1635
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives
    • Discusses the basics of combinations and permutations, and how to calculate the probability of certain events, such as n-bit errors in a codeword.

    The lottery "game" consists of picking

    Answering such questions occurs in many applications beyond games. In digital communications, for example, you might ask how many possible double-bit errors can occur in a codeword. Numbering the bit positions from 1 to N, the answer is the same as the lottery problem with k=6. Solving these kind of problems amounts to understanding permutations - the number of ways of choosing things when order matters as in baseball lineups - and combinations - the number of ways of choosing things when order does not matter as in lotteries and bit errors.

    Calculating permutations is the easiest. If we are to pick k numbers from a pool of n, we have n choices for the first one. For the second choice, we have n-1. The number of length-two ordered sequences is therefore be n(n-1). Continuing to choose until we make k choices means the number of permutations is

    \[n(n-1)(n-2)...(n-k+1) \nonumber \]

    This result can be written in terms of factorials as

    \[\frac{n!}{(n-k)!} \nonumber \]

    with

    \[n!=n(n-1)(n-2)...1 \nonumber \]

    For mathematical convenience, we define 0!=1.

    When order does not matter, the number of combinations equals the number of permutations divided by the number of orderings. The number of ways a pool of k things can be ordered equals k!. Thus, once we choose the nine starters for our baseball game, we have

    \[9!=362,880 \nonumber \]

    different lineups! The symbol for the combination of k things drawn from a pool of n is

    \[\binom{n}{k} \nonumber \]

    and equals

    \[\frac{n!}{(n-k)!k!} \nonumber \]

    Exercise \(\PageIndex{1}\)

    What are the chances of winning the lottery? Assume you pick 6 numbers from the numbers 1-60.

    Solution

    \[\binom{60}{6}=\frac{60!}{54!6!}=50,063,860 \nonumber \]

    Combinatorials occur in interesting places. For example, Newton derived that the n-th power of a sum obeyed the formula

    \[(x+y)^{n}=\binom{n}{0}x^{n}+\binom{n}{1}x^{n-1}y+\binom{n}{2}x^{n-2}y^{2}+...+\binom{n}{n}y^{n} \nonumber \]

    Exercise \(\PageIndex{1}\)

    What does the sum of binomial coefficients equal? In other words, what is

    \[\sum_{k=0}^{n}\binom{n}{k} \nonumber \]

    Solution

    Because of Newton's binomial theorem, the sum equals

    \[(1+1)^{n}=2^{n} \nonumber \]

    A related problem is calculating the probability that any two bits are in error in a length-

    \[p^{2}(1-p)^{n-2} \nonumber \]

    The probability of a two-bit error occurring anywhere equals this probability times the number of combinations:

    \[\binom{n}{2}p^{2}(1-p)^{n-2} \nonumber \]

    Note that the probability that zero or one or two, etc. errors occurring must be one; in other words, something must happen to the codeword! That means that we must have

    \[\binom{n}{0}(1-p)^{n}+\binom{n}{1}(1-p)^{n-1}+\binom{n}{2}p^{2}(1-p)^{n-2}+...+\binom{n}{n}p^{n}=1 \nonumber \]

    Can you prove this?


    This page titled 7.2: Permutations and Combinations is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Don H. Johnson via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?