Skip to main content
Engineering LibreTexts

18.3: A.3- Derivation of the Laplace Transform of a Definite Integral

  • Page ID
    7742
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Suppose that a function \(f(t)\) has Laplace transform \(F(s)=L[f(t)]\), and that we need the transform of the definite integral \(\int_{\tau=-\infty}^{\tau=t \geq 0} f(\tau) d \tau\). Note the lower limit of \(\tau=-\infty\); we usually consider \(f(t)\) only for \(t \geq 0\), but occasionally the integral of \(f(t)\) over previous time, \(t<0\), is also needed.

    \[L\left[\begin{array}{l}
    \tau=t \geq 0 \\
    \iint_{-\infty} f(\tau) d \tau
    \end{array}\right]=\int_{t=0}^{t=\infty} \overbrace{ \left[\int_{\tau = -\infty}^{\tau=t \geq 0} f(\tau) d \tau \right] }^u\overbrace{e^{-s t} d t}^{d v}\label{eqn:A.8} \]

    Integrating by parts gives

    \[L\left[\int_{\tau=-\infty}^{\tau=t \geq 0} f(\tau) d \tau\right]=\left.\left\{\left[\int_{\tau=-\infty}^{\tau=t \geq 0} f(\tau) d \tau\right]\left(\frac{e^{-s t}}{-s}\right)\right\}\right|_{t=0} ^{t=\infty}-\left(\frac{1}{-s}\right) \int_{t=0}^{t=\infty} e^{-s t} \frac{d}{d t}\left[\int_{\tau=-\infty}^{\tau=t \geq 0} f(\tau) d \tau\right] d t\label{eqn:A.9} \]

    The derivative of the definite integral in the second right-hand-side term of Equation \(\ref{eqn:A.9}\) is a special case of Leibnitz’s rule (Hildebrand, 1962, p. 360):

    \[\frac{d}{d t}\left[\int_{\tau=-\infty}^{\tau=t \geq 0} f(\tau) d \tau\right]=f(t)\label{eqn:A.10} \]

    With the simple result Equation \(\ref{eqn:A.10}\), and with evaluation of the limits of the first right-hand-side term, Equation \(\ref{eqn:A.9}\) becomes

    \[L\left[\int_{\tau=-\infty}^{\tau=t \geq 0} f(\tau) d \tau\right]=\frac{1}{s} \int_{\tau=-\infty}^{\tau=0} f(\tau) d \tau+\frac{1}{s} \int_{t=0}^{t=\infty} e^{-s t} f(t) d t\label{eqn:A.11} \]

    Thus, the final form of the required general transform is

    \[L\left[\int_{\tau=-\infty}^{\tau=t \geq 0} f(\tau) d \tau\right]=\frac{1}{s} F(s)+\frac{1}{s} \int_{\tau=-\infty}^{\tau=0} f(\tau) d \tau\label{eqn:A.12} \]

    For most applications, we have \(f(t)=0\) for \(t<0\), for which the simpler transform is:

    \[L\left[\int_{\tau=0}^{\tau=t \geq 0} f(\tau) d \tau\right]=\frac{1}{s} F(s)\label{eqn:A.13} \]

    If we regard the integral of \(f(t)\) as being the first “negative” derivative (antiderivative), then we see that transform Equation \(\ref{eqn:A.12}\) is logically consistent with transform Equation 2.2.9 for a “positive” derivative, with respect to both power of \(s\) and the initial value term.


    This page titled 18.3: A.3- Derivation of the Laplace Transform of a Definite Integral is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by William L. Hallauer Jr. (Virginia Tech Libraries' Open Education Initiative) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.