Skip to main content
Engineering LibreTexts

9.3: Common Discrete Time Fourier Transforms

  • Page ID
    22895
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Common DTFTs

    Table \(\PageIndex{1}\)
    Time Domain \(x[n]\) Frequency Domain \(X(w)\) Notes
    \(\delta[n]\) \(1\)
    \(\delta[n-M]\) \(e^{−j w M}\) integer \(M\)
    \(\sum_{m=-\infty}^{\infty} \delta[n-M m]\) \(\sum_{m=-\infty}^{\infty} e^{-j w M m}=\frac{1}{M} \sum_{k=-\infty}^{\infty} \delta\left(\frac{w}{2 \pi}-\frac{k}{M}\right)\) integer \(M\)
    \(e^{−jan}\) \(2 \pi \delta (w+a)\) real number \(a\)
    \(u[n]\) \(\frac{1}{1-e^{-j w}}+\sum_{k=-\infty}^{\infty} \pi \delta(w+2 \pi k)\)
    \(a^n u(n)\) \(\frac{1}{1-a e^{-j w}}\) if \(|a|<1\)
    \(\cos(an)\) \(\pi[\delta(w-a)+\delta(w+a)]\) real number \(a\)
    \(W \cdot \operatorname{sinc}^{2}(W n)\) \(\operatorname{tri}\left(\frac{w}{2 \pi W}\right)\) real number \(W\), \(0<W≤0.50\)
    \(W \cdot \operatorname{sinc}[W(n+a)]\) \(\operatorname{rect}\left(\frac{w}{2 \pi W}\right) \cdot e^{j a w}\) real numbers \(W\), \(a\) \(0<W≤1\)
    \(\operatorname{rect}\left[\frac{(n-M / 2)}{M}\right]\) \(\frac{\sin [w(M+1) / 2]}{\sin (w / 2)} e^{-j w M / 2}\) integer \(M\)
    \(\frac{W}{(n+a)}\{\cos [\pi W(n+a)]-\operatorname{sinc}[W(n+a)]\}\) \(j w \cdot \operatorname{rect}\left(\frac{w}{\pi W}\right) e^{j} a w\) real numbers \(W\), \(a\) \(0<W≤1\)
    \(\frac{1}{\pi n^{2}}\left[(-1)^{n}-1\right]\) \(|w|\)
    \(\left\{\begin{array}{ll}
    0 & n=0 \\
    \frac{(-1)^{n}}{n} & \text { elsewhere }
    \end{array}\right.\)
    \(jw\) differentiator filter
    \(\left\{\begin{array}{ll}
    0 & \quad n \text { odd } \\
    \frac{2}{\pi n} & \quad n \text { even }
    \end{array}\right.\)
    \(\left\{\begin{array}{cc}
    j & w<0 \\
    0 & w=0 \\
    -j & w>0
    \end{array}\right.\)
    Hilbert Transform

    Notes

    rect(\(t\)) is the rectangle function for arbitrary real-valued \(t\).

    \[\operatorname{rect}(\mathrm{t})=\left\{\begin{array}{ll}
    0 & \text { if }|t|>1 / 2 \\
    1 / 2 & \text { if }|t|=1 / 2 \\
    1 & \text { if }|t|<1 / 2
    \end{array}\right. \nonumber \]

    tri(\(t\)) is the triangle function for arbitrary real-valued \(t\).

    \[\operatorname{tri}(\mathrm{t})=\left\{\begin{array}{ll}
    1+t & \text { if }-1 \leq t \leq 0 \\
    1-t & \text { if } 0<t \leq 1 \\
    0 & \text { otherwise }
    \end{array}\right. \nonumber \]


    This page titled 9.3: Common Discrete Time Fourier Transforms is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

    • Was this article helpful?