Skip to main content
Engineering LibreTexts

15.2: Vector Spaces

  • Page ID
    22936
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Introduction

    Definition: Vector Space

    A vector space \(S\) is a collection of "vectors" such that (1) if \(f_{1} \in S \Rightarrow \alpha f_{1} \in S\) for all scalars \(\alpha\) (where \(alpha \in \mathbb{R}\), \(\alpha \in \mathbb{C}\), or some other field) and (2) if \(f_{1} \in S\), \(f_2 \in S\), then \((f_1+f_2) \in S\)

    To define an vector space, we need

    • A set of things called "vectors" (\(X\))
    • A set of things called "scalars" that form a field (\(A\))
    • A vector addition operation ()
    • A scalar multiplication operation (\(*\))

    The operations need to have all the properties of given below. Closure is usually the most important to show.

    Vector Spaces

    If the scalars \(\alpha\) are real, \(S\) is called a real vector space.

    If the scalars \(\alpha\) are complex, \(S\) is called a complex vector space.

    If the "vectors" in \(S\) are functions of a continuous variable, we sometimes call \(S\) a linear function space

    Properties

    We define a set \(V\) to be a vector space if

    1. \(x+y=y+x\) for each \(x\) and \(y\) in \(V\)
    2. \(x+(y+z)=(x+y)+z\) for each \(x\), \(y\), and \(z\) in \(V\)
    3. There is a unique "zero vector" such that \(x+0=x\) for each \(x\) in \(V\) (0 is the field additive identity)
    4. For each \(x\) in \(V\) there is a unique vector \(−x\) such that \(x+−x=0\)
    5. \(1x=x\) (1 is the field multiplicative identity)
    6. \((c_1c_2)x=c_1(c_2x)\) for each \(x\) in \(V\) and \(c_1\) and \(c_2\) in \(\mathbb{C}\)
    7. \(c(x+y)=cx+cy\) for each \(x\) and \(y\) in \(V\) and \(c\) in \(\mathbb{C}\)
    8. \((c_1+c_2)x=c_1x+c_2x\) for each \(x\) in \(V\) and \(c_1\) and \(c_2\) in \(\mathbb{C}\)

    Examples

    • \(\mathbb{R}^n\) = real vector space
    • \(\mathbb{C}^n\) = complex vector space
    • \(L^{1}(\mathbb{R})=\left\{f(t), f(t) | \int_{-\infty}^{\infty}\left| f(t) \right| \mid d t<\infty\right\}\) is a vector space
    • \(L^{\infty}(\mathbb{R})=\{f(t), f(t) \mid f(t) \text { is bounded }\}\) is a vector space
    • \(L^{2}(\mathbb{R})=\left\{f(t), f(t) | \int_{-\infty}^{\infty}(|f(t)|)^{2} d t<\infty\right\}\) = finite energy signals is a vector space
    • \(L^{2}([0, T])\) = finite energy functions on interval \([0,T]\)
    • \(\ell^{1}(\mathbb{Z})\), \(\ell^{2}(\mathbb{Z})\), \(\ell^{\infty}(\mathbb{Z})\) are vector spaces
    • The collection of functions piecewise constant between the integers is a vector space
    vecsp_f1.png

    Figure \(\PageIndex{1}\)

    • \(\mathbb{R}_{+}^{2}=\left\{\left(\begin{array}{l}
      x_{0} \\
      x_{1}
      \end{array}\right),\left(\begin{array}{l}
      x_{0} \\
      x_{1}
      \end{array}\right) \mid\left(x_{0}>0\right) \wedge\left(x_{1}>0\right)\right\}\) is not a vector space. \(\left(\begin{array}{l}
      1 \\
      1
      \end{array}\right) \in \mathbb{R}_{+}^{2}\), but \(\alpha\left(\begin{array}{l}
      1 \\
      1
      \end{array}\right) \notin \mathbb{R}_{+}^{2}\), \(\alpha < 0\)
    • \(D=\left\{z \in \mathbb{C},|z| \leq 1\right\}\) is not a vector space. \(\left(z_{1}=1\right) \in D\), \((z_2=j) \in D\), but \(\left(z_{1}+z_{2}\right) \notin D\), \(\left|z_{1}+z_{2}\right|=\sqrt{2}>1\)

    Note

    Vector spaces can be collections of functions, collections of sequences, as well as collections of traditional vectors (i.e. finite lists of numbers)


    This page titled 15.2: Vector Spaces is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

    • Was this article helpful?