Skip to main content
Engineering LibreTexts

15.8: Types of Bases

  • Page ID
    23198
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Normalized Basis

    Definition: Normalized Basis

    A basis \(\left\{b_{i}\right\}\) where each \(b_i\) has unit norm

    \[\left\|b_{i}\right\|=1, \quad i \in \mathbb{Z} \nonumber \]

    Note

    The concept of basis applies to all vector spaces (Section 15.2). The concept of normalized basis applies only to normed spaces (Section 15.3).

    You can always normalize a basis: just multiply each basis vector by a constant, such as \(\frac{1}{\left\|b_{i}\right\|}\)

    Example \(\PageIndex{1}\)

    We are given the following basis:

    \[\left\{b_{0}, b_{1}\right\}=\left\{\left(\begin{array}{l}
    1 \\
    1
    \end{array}\right),\left(\begin{array}{c}
    1 \\
    -1
    \end{array}\right)\right\} \nonumber \]

    Normalized with \(\ell^{2}\) norm:

    \[\begin{array}{c}
    \tilde{b}_{0}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
    1 \\
    1
    \end{array}\right) \\
    \tilde{b}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
    1 \\
    -1
    \end{array}\right)
    \end{array} \nonumber \]

    Normalized with \(\ell^{1}\) norm:

    \[\begin{array}{c}
    \tilde{b}_{0}=\frac{1}{2}\left(\begin{array}{c}
    1 \\
    1
    \end{array}\right) \\
    \tilde{b}_{1}=\frac{1}{2}\left(\begin{array}{c}
    1 \\
    -1
    \end{array}\right)
    \end{array} \nonumber \]

    Orthogonal Basis

    Orthogonal Basis
    a basis {bi}b i in which the elements are mutually orthogonal

    i,ij:(⟨bi,bj⟩=0)i i j b i b j 0

    Definition: Orthogonal Basis

    A basis \(\left\{b_{i}\right\}\) in which the elements are mutually orthogonal

    \[\left\langle b_{i}, b_{j}\right\rangle=0, \quad i \neq j \nonumber \]

    Note

    The concept of orthogonal basis applies only to Hilbert Spaces (Section 15.4).

    Example \(\PageIndex{2}\)

    Standard basis for \(\mathbb{R}^2\), also referred to as \(\ell^{2}([0,1])\):

    \[\begin{array}{l}
    b_{0}=\left(\begin{array}{l}
    1 \\
    0
    \end{array}\right) \\
    b_{1}=\left(\begin{array}{l}
    0 \\
    1
    \end{array}\right)
    \end{array} \nonumber \]

    \[\left\langle b_{0}, b_{1}\right\rangle=\sum_{i=0}^{1} b_{0}[i] b_{1}[i]=1 \times 0+0 \times 1=0 \nonumber \]

    Example \(\PageIndex{3}\)

    Now we have the following basis and relationship:

    \[\left\{\left(\begin{array}{l}
    1 \\
    1
    \end{array}\right),\left(\begin{array}{c}
    1 \\
    -1
    \end{array}\right)\right\}=\left\{h_{0}, h_{1}\right\} \nonumber \]

    \[\left\langle h_{0}, h_{1}\right\rangle=1 \times 1+1 \times-1=0 \nonumber \]

    Orthonormal Basis

    Pulling the previous two sections (definitions) together, we arrive at the most important and useful basis type:

    Definition: Orthonormal Basis

    A basis that is both normalized and orthogonal

    \[\left\|b_{i}\right\|=1, \quad i \in \mathbb{Z} \nonumber \]

    \[\left\langle b_{i}, b_{j}\right\rangle \quad, \quad i \neq j \nonumber \]

    Notation:

    We can shorten these two statements into one:

    \[\left\langle b_{i}, b_{j}\right\rangle=\delta_{i j} \nonumber \]

    where

    \[\delta_{i j}=\left\{\begin{array}{l}
    1 \text { if } i=j \\
    0 \text { if } i \neq j
    \end{array}\right. \nonumber \]

    Where \(\delta_{i j}\) is referred to as the Kronecker delta function (Section 1.6) and is also often written as \(\delta[i-j]\).

    Orthonormal Basis Example #1

    \[\left\{b_{0}, b_{2}\right\}=\left\{\left(\begin{array}{l}
    1 \\
    0
    \end{array}\right),\left(\begin{array}{l}
    0 \\
    1
    \end{array}\right)\right\} \nonumber \]

    Orthonormal Basis Example #2

    \[\left\{b_{0}, b_{2}\right\}=\left\{\left(\begin{array}{l}
    1 \\
    1
    \end{array}\right),\left(\begin{array}{c}
    1 \\
    -1
    \end{array}\right)\right\} \nonumber \]

    Orthonormal Basis Example #3

    \[\left\{b_{0}, b_{2}\right\}=\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{l}
    1 \\
    1
    \end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}
    1 \\
    -1
    \end{array}\right)\right\} \nonumber \]

    Beauty of Orthonormal Bases

    Orthonormal bases are very easy to deal with! If \(\left\{b_{i}\right\}\) is an orthonormal basis, we can write for any \(x\)

    \[x=\sum_{i} \alpha_{i} b_{i} \nonumber \]

    It is easy to find the \(\alpha_i\):

    \[\begin{align}
    \left\langle x, b_{i}\right\rangle &=\left\langle\sum_{k} \alpha_{k} b_{k}, b_{i}\right\rangle \nonumber \\
    &=\sum_{k} \alpha_{k}\left\langle\left(b_{k}, b_{i}\right)\right\rangle
    \end{align} \nonumber \]

    where in the above equation we can use our knowledge of the delta function to reduce this equation:

    \[\begin{array}{c}
    \left\langle b_{k}, b_{i}\right\rangle=\delta_{i k}=\left\{\begin{array}{l}
    1 \text { if } i=k \\
    0 \text { if } i \neq k
    \end{array}\right. \\
    \left\langle x, b_{i}\right\rangle=\alpha_{i}
    \end{array} \nonumber \]

    Therefore, we can conclude the following important equation for \(x\):

    \[x=\sum_{i}\left\langle\left(x, b_{i}\right)\right\rangle b_{i} \nonumber \]

    The \(\alpha_i\)'s are easy to compute (no interaction between the \(b_i\)'s)

    Example \(\PageIndex{4}\)

    Given the following basis:

    \[\left\{b_{0}, b_{1}\right\}=\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{c}
    1 \\
    1
    \end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}
    1 \\
    -1
    \end{array}\right)\right\} \nonumber \]

    represent \(x=\left(\begin{array}{l}
    3 \\
    2
    \end{array}\right)\)

    Example \(\PageIndex{5}\): Slightly Modified Fourier Series

    We are given the basis

    \[\left.\left\{\frac{1}{\sqrt{T}} e^{j \omega_{0} n t}\right\}\right|_{n=-\infty} ^{\infty} \nonumber \]

    on \(L^2([0,T])\) where \(T=\frac{2 \pi}{\omega_0}\).

    \[f(t)=\sum_{n=-\infty}^{\infty}\left\langle\left(f, e^{j \omega_{0} n t}\right)\right\rangle e^{j \omega_{0} n t} \frac{1}{\sqrt{T}} \nonumber \]

    Where we can calculate the above inner product in \(L^2\) as

    \[\left\langle f, e^{j \omega_{0} n t}\right\rangle=\frac{1}{\sqrt{T}} \int_{0}^{T} f(t) \overline{e^{j \omega_{0} n t}} \mathrm{d} t=\frac{1}{\sqrt{T}} \int_{0}^{T} f(t) e^{-\left(j \omega_{0} n t\right)} \mathrm{d} t \nonumber \]

    Orthonormal Basis Expansions in a Hilbert Space

    Let \(\left\{b_{i}\right\}\) be an orthonormal basis for a Hilbert space \(H\). Then, for any \(x \in H\) we can write

    \[x=\sum_{i} \alpha_{i} b_{i} \nonumber \]

    where \(\alpha_{i}=\left\langle x, b_{i}\right\rangle\).

    • "Analysis": decomposing \(x\) in term of the \(b_i\)

      \[\alpha_{i}=\left\langle x, b_{i}\right\rangle \nonumber \]

    • "Synthesis": building \(x\) up out of a weighted combination of the \(b_i\)

      \[x=\sum_{i} \alpha_{i} b_{i} \nonumber \]


    This page titled 15.8: Types of Bases is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..