Skip to main content
Engineering LibreTexts

15.12: Orthonormal Bases in Real and Complex Spaces

  • Page ID
    23202
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Notation

    Transpose operator \(A^T\) flips the matrix across it's diagonal.

    \[\begin{array}{l}
    A=\left(\begin{array}{ll}
    a_{1,1} & a_{1,2} \\
    a_{2,1} & a_{2,2}
    \end{array}\right) \\
    A^{T}=\left(\begin{array}{ll}
    a_{1,1} & a_{2,1} \\
    a_{1,2} & a_{2,2}
    \end{array}\right)
    \end{array} \nonumber \]

    Column \(i\) of \(A\) is row \(i\) of \(A^T\)

    Recall, inner product

    \[\boldsymbol{x}=\left(\begin{array}{c}
    x_{0} \\
    x_{1} \\
    \vdots \\
    x_{n-1}
    \end{array}\right) \nonumber \]

    \[\boldsymbol{y}=\left(\begin{array}{c}
    y_{0} \\
    y_{1} \\
    \vdots \\
    y_{n-1}
    \end{array}\right) \nonumber \]

    \[\boldsymbol{x}^{T} \boldsymbol{y}=\left(\begin{array}{cccc}
    x_{0} & x_{1} & \ldots & x_{n-1}
    \end{array}\right)\left(\begin{array}{c}
    y_{0} \\
    y_{1} \\
    \vdots \\
    y_{n-1}
    \end{array}\right)=\sum_{i} \boldsymbol{x}_{i} \boldsymbol{y}_{i}=\langle\boldsymbol{y}, \boldsymbol{x}\rangle \nonumber \]

    on \(\mathbb{R}^n\).

    Hermitian transpose \(A^H\), transpose and conjugate

    \[\begin{array}{c}
    A^{\mathrm{H}}=\overline{A^{T}} \\
    \langle \boldsymbol{y}, \boldsymbol{x}\rangle=\boldsymbol{x}^{\mathrm{H}} \boldsymbol{y}=\sum_{i} \boldsymbol{x}_{i} \bar{\boldsymbol{y}}_{i}
    \end{array} \nonumber \]

    on \(\mathbb{C}^n\).

    Now, let \(\left\{b_{0}, b_{1}, \dots, b_{n-1}\right\}\) be an orthonormal basis for \(\mathbb{C}^n\)

    \[\begin{array}{c}
    i=\{0,1, \ldots, n-1\}\left\langle b_{i}, b_{i}\right\rangle=1 \\
    \left(i \neq j,\left\langle b_{i}, b_{i}\right\rangle=b_{j}^{H} b_{i}=0\right)
    \end{array} \nonumber \]

    Basis matrix:

    \[B=\left(\begin{array}{cccc}
    \vdots & \vdots & & \vdots \\
    b_{0} & b_{1} & \dots & b_{n-1} \\
    \vdots & \vdots & & \vdots
    \end{array}\right) \nonumber \]

    Now,

    \[B^{\mathrm{H}} B=\left(\begin{array}{ccc}
    \cdots & b_{0}^{\mathrm{H}} & \cdots \\
    \cdots & b_{1}^{\mathrm{H}} & \cdots \\
    & \vdots \\
    \cdots & b_{n-1}^{\mathrm{H}} & \ldots
    \end{array}\right)\left(\begin{array}{cccc}
    \vdots & \vdots & & \vdots \\
    b_{0} & b_{1} & \cdots & b_{n-1} \\
    \vdots & \vdots & & \vdots
    \end{array}\right)=\left(\begin{array}{cccc}
    b_{0}^{\mathrm{H}} b_{0} & b_{0}^{\mathrm{H}} b_{1} & \ldots & b_{0}^{\mathrm{H}} b_{n-1} \\
    b_{1}^{\mathrm{H}} b_{0} & b_{1}^{\mathrm{H}} b_{1} & \ldots & b_{1}^{\mathrm{H}} b_{n-1} \\
    \vdots & & \\
    b_{n-1}^{\mathrm{H}} b_{0} & b_{n-1}^{\mathrm{H}} b_{1} & \ldots & b_{n-1}^{\mathrm{H}} b_{n-1}
    \end{array}\right) \nonumber \]

    For orthonormal basis with basis matrix \(B\)

    \[B^H=B^{-1} \nonumber \]

    (\(B^{T}=B^{-1} \text {in } \mathbb{R}^{n}\) in \(\mathbb{R}^n\)) \(B^H\) is easy to calculate while \(B^{-1}\) is hard to calculate.

    So, to find \(\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right\}\) such that

    \[\boldsymbol{x}=\sum_{i} \alpha_{i} b_{i} \nonumber \]

    Calculate

    \[\left(\boldsymbol{\alpha}=B^{-1} \boldsymbol{x}\right) \Rightarrow\left(\boldsymbol{\alpha}=B^{H} \boldsymbol{x}\right) \nonumber \]

    Using an orthonormal basis we rid ourselves of the inverse operation.


    This page titled 15.12: Orthonormal Bases in Real and Complex Spaces is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

    • Was this article helpful?