Skip to main content
Engineering LibreTexts

16.4: Uniform Convergence of Function Sequences

  • Page ID
    22945
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Uniform Convergence of Function Sequences

    For this discussion, we will only consider functions with \(g_n\) where

    \[\mathbb{R} \rightarrow \mathbb{R} \nonumber \]

    Definition: Uniform Convergence

    The sequence (Section 16.2) \(\left.\left\{g_{n}\right\}\right|_{n=1} ^{\infty}\) converges uniformly to function \(g\) if for every \(\varepsilon > 0\) there is an integer \(N\) such that \(n \geq N\) implies

    \[\left|g_{n}(t)-g(t)\right| \leq \epsilon \label{16.11} \]

    for all \(t \in \mathbb{R}\).

    Obviously every uniformly convergent sequence is pointwise (Section 16.3) convergent. The difference between pointwise and uniform convergence is this: If \(\left\{g_{n}\right\}\) converges pointwise to \(g\), then for every \(\varepsilon> 0\) and for every \(t \in \mathbb{R}\) there is an integer \(N\) depending on \(\varepsilon\) and \(t\) such that Equation \ref{16.11} holds if \(n≥N\). If \(\left\{g_{n}\right\}\) converges uniformly to \(g\), it is possible for each \(\varepsilon>0\) to find one integer \(N\) that will do for all \(t \in \mathbb{R}\).

    Example \(\PageIndex{1}\)

    \[g_{n}(t)=\frac{1}{n}, t \in \mathbb{R} \nonumber \]

    Let \(\varepsilon > 0\) be given. Then choose \(N=\left\lceil\frac{1}{\varepsilon}\right\rceil\). Obviously,

    \[\left|g_{n}(t)-0\right| \leq \epsilon, \quad n \geq N \nonumber \]

    for all \(t\). Thus, \(g_n(t)\) converges uniformly to \(0\).

    Example \(\PageIndex{2}\)

    \[g_{n}(t)=\frac{t}{n}, t \in \mathbb{R} \nonumber \]

    Obviously for any \(\varepsilon > 0\) we cannot find a single function \(g_n(t)\) for which Equation \ref{16.11} holds with \(g(t)=0\) for all \(t\). Thus \(g_n\) is not uniformly convergent. However we do have:

    \[g_{n}(t) \rightarrow g(t) \text{ pointwise }\nonumber \]

    Conclusion

    Uniform convergence always implies pointwise convergence, but pointwise convergence does not guarantee uniform convergence.


    This page titled 16.4: Uniform Convergence of Function Sequences is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

    • Was this article helpful?