5.2: The FFT from Factoring the DFT Operator
- Page ID
- 1987
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The definition of the DFT in Multidimensional Index Mapping can written as a matrix-vector operation by \(C=WX \; \; \text{where}\; \; N=8\)
\[\begin{bmatrix} C(0)\\ C(1)\\ C(2)\\ C(3)\\ C(4)\\ C(5)\\ C(6)\\ C(7) \end{bmatrix}=\begin{bmatrix} W^{0} & W^{0} & W^{0} & W^{0} & W^{0} & W^{0} & W^{0} & W^{0}\\ W^{0} & W^{1} & W^{2} & W^{3} & W^{4} & W^{5} & W^{6} & W^{7}\\ W^{0} & W^{2} & W^{4} & W^{6} & W^{8} & W^{10} & W^{12} & W^{14}\\ W^{0} & W^{3} & W^{6} & W^{9} & W^{12} & W^{15} & W^{18} & W^{21}\\ W^{0} & W^{4} & W^{8} & W^{12} & W^{16} & W^{20} & W^{24} & W^{28}\\ W^{0} & W^{5} & W^{10} & W^{15} & W^{20} & W^{25} & W^{30} & W^{35}\\ W^{0} & W^{6} & W^{12} & W^{18} & W^{24} & W^{30} & W^{36} & W^{42}\\ W^{0} & W^{7} & W^{14} & W^{21} & W^{28} & W^{35} & W^{42} & W^{49} \end{bmatrix}\begin{bmatrix} x(0)\\ x(1)\\ x(2)\\ x(3)\\ x(4)\\ x(5)\\ x(6)\\ x(7) \end{bmatrix} \nonumber \]
which clearly requires \(N^2=64\) complex multiplications and \(N(N-1)\) additions. A factorization of the DFT operator, \(W\), gives \(W=F_{1}F_{2}F_{3}\; \; and\; \; C=F_{1}F_{2}F_{3}X\).
Expanding on that gives
\[\begin{bmatrix} C(0)\\ C(4)\\ C(2)\\ C(6)\\ C(1)\\ C(5)\\ C(3)\\ C(7) \end{bmatrix}=\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0\\ W^{0} & 0 & -W^{2} & 0 & 0 & 0 & 0 & 0\\ 0 & W^{0} & 0 & -W^{2} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 & W^{0} & 0 & -W^{0} & 0\\ 0 & 0 & 0 & 0 & 0 & W^{2} & 0 & -W^{2} \end{bmatrix} \nonumber \]
\[\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\\ W_{0} & 0 & 0 & 0 & -W_{0} & 0 & 0 & 0\\ 0 & W_{1} & 0 & 0 & 0 & -W_{1} & 0 & 0\\ 0 & 0 & W_{2} & 0 & 0 & 0 & -W_{2} & 0\\ 0 & 0 & 0 & W_{3} & 0 & 0 & 0 & -W_{3} \end{bmatrix}\begin{bmatrix} x(0)\\ x(1)\\ x(2)\\ x(3)\\ x(4)\\ x(5)\\ x(6)\\ x(7) \end{bmatrix} \nonumber \]
where the \(F_i\) matrices are sparse. Note that each has \(16\; (\text{or}\; 2N)\) non-zero terms and \(F_2\) and \(F_3\) have \(8\; (\text{or}\; N)\) non-unity terms. If \(N=2^M\), then the number of factors is \(\log (N)=M\). In another form with the twiddle factors separated so as to count the complex multiplications we have
\[\begin{bmatrix} C(0)\\ C(4)\\ C(2)\\ C(6)\\ C(1)\\ C(5)\\ C(3)\\ C(7) \end{bmatrix}=\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0\\ 0 & 0 & 0 & & 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix} \nonumber \]
\[\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & W^{0} & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & W^{2} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0& 0 & 0 & W^{0} & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & W^{2} \end{bmatrix}\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0\\ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \end{bmatrix} \nonumber \]
\[\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & W^{0} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & W^{1} & 0 & 0\\ 0 & 0 & 0 & 0& 0 & 0 & W^{2} & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & W^{3} \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \end{bmatrix}\begin{bmatrix} x(0)\\ x(1)\\ x(2)\\ x(3)\\ x(4)\\ x(5)\\ x(6)\\ x(7) \end{bmatrix} \nonumber \]
which is in the form