Skip to main content
Engineering LibreTexts

6.5: Continuous Time Circular Convolution and the CTFS

  • Page ID
    22876
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Introduction

    This module relates circular convolution of periodic signals in the time domain to multiplication in the frequency domain.

    Signal Circular Convolution

    Given a signal \(f(t)\) with Fourier coefficients \(c_n\) and a signal \(g(t)\) with Fourier coefficients \(d_n\), we can define a new signal, \(v(t)\), where \(v(t)=f(t) \circledast g(t)\). We find that the Fourier Series representation of \(v(t)\), \(a_n\), is such that \(a_n=c_nd_n\). \(f(t) \circledast g(t)\) is the circular convolution (Section 7.5) of two periodic signals and is equivalent to the convolution over one interval, i.e. \(f(t) \circledast g(t)=\int_{0}^{T} \int_{0}^{T} f(\tau) g(t-\tau) d \tau d t\).

    Note

    Circular convolution in the time domain is equivalent to multiplication of the Fourier coefficients.

    This is proved as follows

    \[\begin{align}
    a_{n} &=\frac{1}{T} \int_{0}^{T} v(t) e^{-\left(j \omega_{0} n t\right)} \mathrm{d} t \nonumber \\
    &=\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} f(\tau) g(t-\tau) \mathrm{d} \tau e^{-\left(\omega j_{0} n t\right)} \mathrm{d} t \nonumber \\
    &=\frac{1}{T} \int_{0}^{T} f(\tau)\left(\frac{1}{T} \int_{0}^{T} g(t-\tau) e^{-\left(j \omega_{0} n t\right)} \mathrm{d} t\right) \mathrm{d} \tau \nonumber \\
    &=\forall \nu, \nu=t-\tau:\left(\frac{1}{T} \int_{0}^{T} f(\tau)\left(\frac{1}{T} \int_{-\tau}^{T-\tau} g(\nu) e^{-\left(j \omega_{0}(\nu+\tau)\right)} \mathrm{d} \nu\right) \mathrm{d} \tau\right) \nonumber \\
    &=\frac{1}{T} \int_{0}^{T} f(\tau)\left(\frac{1}{T} \int_{-\tau}^{T-\tau} g(\nu) e^{-\left(j \omega_{0} n \nu\right)} \mathrm{d} \nu\right) e^{-\left(j \omega_{0} n \tau\right)} \mathrm{d} \tau \nonumber \\
    &=\frac{1}{T} \int_{0}^{T} f(\tau) d_{n} e^{-\left(j \omega_{0} n \tau\right)} \mathrm{d} \tau \nonumber \\
    &=d_{n}\left(\frac{1}{T} \int_{0}^{T} f(\tau) e^{-\left(j \omega_{0} n \tau\right)} \mathrm{d} \tau\right) \nonumber \\
    &=c_{n} d_{n}
    \end{align} \nonumber \]

    Exercise

    Take a look at a square pulse with a period of \(T\).

    sqpulse.png

    Figure \(\PageIndex{1}\)

    For this signal

    \[c_{n}=\left\{\begin{array}{l}
    \frac{1}{T} \text { if } n=0 \\
    \frac{1}{2} \frac{\sin \left(\frac{\pi}{2} n\right)}{\frac{\pi}{2} n} \text { otherwise }
    \end{array}\right. \nonumber \]

    Take a look at a triangle pulse train with a period of \(T\).

    exfig.png

    Figure \(\PageIndex{2}\)

    This signal is created by circularly convolving the square pulse with itself. The Fourier coefficients for this signal are \(a_{n}=c_{n}^{2}=\frac{1}{4} \frac{\sin ^{2}}{\left(\frac{\pi}{2} n\right)}\).

    Exercise \(\PageIndex{1}\)

    Find the Fourier coefficients of the signal that is created when the square pulse and the triangle pulse are convolved.

    Answer

    \(a_{n}=\left\{\begin{array}{ll}
    \text { undefined } & n=0 \\
    \frac{1}{8} \frac{\sin ^{3}\left(\frac{\pi}{2} n\right)}{\left(\frac{\pi}{2} n\right)^{3}} & \text { otherwise }
    \end{array}\right.\)

    Conclusion

    Circular convolution in the time domain is equivalent to multiplication of the Fourier coefficients in the frequency domain.


    This page titled 6.5: Continuous Time Circular Convolution and the CTFS is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

    • Was this article helpful?