Skip to main content
Engineering LibreTexts

1.3: The Projection Theorem

  • Page ID
    24229
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Consider the following minimization problem:

    \[\min _{m \in M}\|y-m\|\]

    where the norm is defined through an inner product. The projection theorem (suggested by the figure below), states that the optimal solution \(\hat{m}\) is characterized as follows:

    \[(y-\hat{m}) \perp M\]

    To verify this theorem, assume the converse. Then there exists an \(m_{0},\left\|m_{0}\right\|\) = 1, such that \(<y-\hat{m}, m_{0}>=\delta \neq 0\). We now argue that \(\left(\hat{m}+\delta m_{0}\right) \in M\) achieves a smaller value to the above minimization problem. In particular,

    \[\begin{aligned}
    \left\|y-\hat{m}-\delta m_{0}\right\|^{2} &=\|y-\hat{m}\|^{2}-<y-\hat{m}, \delta m_{0}>-<\delta m_{0}, y-\hat{m}>+|\delta|^{2}\left\|m_{0}\right\|^{2} \\
    &=\|y-\hat{m}\|^{2}-|\delta|^{2}-|\delta|^{2}+|\delta|^{2} \\
    &=\|y-\hat{m}\|^{2}-|\delta|^{2}
    \end{aligned}\]

    This contradicts the optimality of \(\hat{m}).

    • Given a subspace \(\mathcal{S}\), show that any vector x can be uniquely written as \(x=x_{\mathcal{S}}+x_{\mathcal{S}^{\perp}}\), where \(x_{\mathcal{S}} \in \mathcal{S}\) and \(x_{\mathcal{S} \perp} \in \mathcal{S}^{\perp}\).

    Screen Shot 2020-06-30 at 1.17.49 PM.png


    This page titled 1.3: The Projection Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mohammed Dahleh, Munther A. Dahleh, and George Verghese (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.