1.4: Matrices
- Page ID
- 24230
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Our usual notion of a matrix is that of a rectangular array of scalars. The definitions of matrix addition, multiplication, etc., are aimed at compactly representing and analyzing systems of equations of the form
\[\begin{aligned}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} &=y_{1} \\
\cdots & \vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n} &=y_{m}
\end{aligned}\]
This system of equations can be written as Ax = y if we define
\[A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \cdots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right), \quad x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)\]
The rules of matrix addition, matrix multiplication, and scalar multiplication of a matrix remain unchanged if the entries of the matrices we deal with are themselves (conformably dimensioned) matrices rather than scalars. A matrix with matrix entries is referred to as a block matrix or a partitioned matrix.
For example, the \(a_{i j}\), \(x_{j}\) and \(y_{i}\) in respectively A, x, and y above can be matrices, and P the equation Ax = y will still hold, as long as the dimensions of the various submatrices are conformable with the expressions \(\sum a_{i j} x_{j}=y_{i} \text { for } i=1, \cdots, m\) and \(j=1, \cdots, n\). What this requires is that the number of rows in \(a_{i j}\) should equal the number of rows in \(y_{i}\), the number of columns in \(a_{i j}\) should equal the number of rows in \(x_{j}\), and the number of columns in the \(x_{j}\) and \(y_{i}\) should be the same.
- Verify that
\[\left(\begin{array}{cc|c}
1 & 2 & 2 \\
0 & 1 & 3 \\
1 & 1 & 7
\end{array}\right)\left(\begin{array}{cc}
4 & 5 \\
8 & 9 \\
& \\
\hline & \\
2 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
0 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
4 & 5 \\
8 & 9
\end{array}\right)+\left(\begin{array}{c}
2 \\
3 \\
7
\end{array}\right)\left(\begin{array}{cc}
2 & 0
\end{array}\right)\]
In addition to these simple rules for matrix addition, matrix multiplication, and scalar multiplication of partitioned matrices, there is a simple - and simply verified - rule for (complex conjugate) transposition of a partitioned matrix: if \([A]_{i j}=a_{i j}\), then \(\left[A^{\prime}\right]_{i j}=a_{j i}^{\prime}\), i.e., the (i, j)-th block element of \(A^{\prime}\) is the transpose of the (j, i)-th block element of A.
For more involved matrix operations, one has to proceed with caution. For instance, the determinant of the square block-matrix
\[A=\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right)\]
is clearly not \(A_{1} A_{4}-A_{3} A_{2}\) unless all the blocks are actually scalar! We shall lead you to the correct expression (in the case where \(A_{1}\) is square and invertible) in a future Homework.
Matrices as Linear Transformations
T is a transformation or mapping from X to Y , two vector spaces, if it associates to each \(x \in X\) a unique element \(y \in Y\). This transformation is linear if it satisfies
\[T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)\]
- Verify that an n x m matrix A is a linear transformation from \(\mathbf{R}^{m}\) to \(\mathbf{R}^{n}\).
Does every linear transformation have a matrix representation? Assume that both X and Y are finite dimensional spaces with respective bases \(\left\{x_{1}, \ldots x_{m}\right\}\) and \(\left\{y_{1}, \ldots y_{n}\right\}\). Every \(x \in X\) can be uniquely expressed as: \(x=\sum_{i=1}^{m} a_{i} x_{i}\). Equivalently, every x is represented uniquely in terms of an element \(a \in \mathbf{R}^{m}\).Similarly every element \(y \in Y\) is uniquely represented in terms of an element \(b \in \mathbf{R}^{n}\). Now: T(\(x_{j}\)) = \(\sum_{i=1}^{n} b_{i j} y_{i}\) and hence
\[T(x)=\sum_{j=1}^{m} a_{j} T\left(x_{j}\right)=\sum_{i=1}^{n} y_{i}\left(\sum_{j=1}^{m} a_{j} b_{i j}\right)\]
A matrix representation is then given by B = (\(b_{i j}\)). It is evident that a matrix representation is not unique and depends on the basis choice.