4.4: Relationship to Matrix Norms
- Page ID
- 24251
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The singular value decomposition can be used to compute the induced 2-norm of a matrix A.
Theorem 4.2
\[\begin{aligned}
\|A\|_{2} & \triangleq \sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} \\
&=\sigma_{1} \\
&=\sigma_{\max }(A)
\end{aligned}\ \tag{4.21}\]
which tells us that the maximum amplification is given by the maximum singular value.
- Proof
-
\[\begin{aligned}
\sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} &=\sup _{x \neq 0} \frac{\left\|U \Sigma V^{\prime} x\right\|_{2}}{\|x\|_{2}} \\
&=\sup _{x \neq 0} \frac{\left\|\Sigma V^{\prime} x\right\|_{2}}{\|x\|_{2}} \\
&=\sup _{y \neq 0} \frac{\|\Sigma y\|_{2}}{\|V y\|_{2}} \\
&=\sup _{y \neq 0} \frac{\left(\sum_{i=1}^{r} \sigma_{i}^{2}\left|y_{i}\right|^{2}\right)^{\frac{1}{2}}}{\left(\sum_{i=1}^{r}\left|y_{i}\right|^{2}\right)^{\frac{1}{2}}} \\
& \leq \sigma_{1}
\end{aligned}\nonumber\]For \(y=\left[\begin{array}{lll}
1 & 0 & \cdots & 0
\end{array}\right]^{T},\|\Sigma y\|_{2}=\sigma_{1}\), and the supremum is attained. (Notice that this correponds to \(x = v_{1}\). Hence, \(Av_{1}=\sigma_{1}u_{1}.\)
Another application of the singular value decomposition is in computing the minimal amplification a full rank matrix exerts on elements with 2-norm equal to 1.
Theorem 4.3
Given \(A \in C^{m \times n}\), suppose \(rank(A) = n\). Then
\[\min _{\|x\|_{2}=1}\|A x\|_{2}=\sigma_{n}(A)\ \tag{4.22}\]
Note that if \(rank(A) < n\), then there is an \(x\) such that the minimum is zero (rewrite \(A\) in terms of its SVD to see this).
- Proof
-
For any \(\|x\|_{2}=1\),
\[\begin{aligned}
\|A x\|_{2} &=\left\|U \Sigma V^{\prime} x\right\|_{2} \\
&=\left\|\Sigma V^{\prime} x\right\|_{2} \quad \text { (invariant under multiplication by unitary matrices) } \\
&=\|\Sigma y\|_{2}
\end{aligned}\nonumber\]Figure \(\PageIndex{1}\): Graphical depiction of the mapping involving A^{2 \times 2}\). Note that \(Av_{1} = \sigma_{1} u_{1}\) and that \(Av_{2} = \sigma_{2} u_{2}\).
for \(y = V^{\prime}x\). Now
\[\begin{aligned}
\|\Sigma y\|_{2} &=\left(\sum_{i=1}^{n}\left|\sigma_{i} y_{i}\right|^{2}\right)^{\frac{1}{2}} \\
& \geq \sigma_{n}
\end{aligned}\nonumber\]Note that the minimum is achieved for \(y=\left[\begin{array}{llll}
0 & 0 & \cdots & 0 &1
\end{array}\right]^{T}\); thus the proof is complete.
The Frobenius norm can also be expressed quite simply in terms of the singular values. We leave you to verify that
\[\begin{aligned}
\|A\|_{F} & \triangleq\left(\sum_{j=1}^{n} \sum_{i=1}^{m}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} \\
&=\left(\operatorname{trace}\left(A^{\prime} A\right)\right)^{\frac{1}{2}} \\
&=\left(\sum_{i=1}^{r} \sigma_{i}^{2}\right)^{\frac{1}{2}}
\end{aligned}\ \tag{4.23}\]
Example 4.4 Matrix Inequality
We say \(A \leq B\), two square matrices, if
\[x^{\prime} A x \leq x^{\prime} B x \quad \text { for all } x \neq 0\nonumber\]
It follows that for any matrix A, not necessarily square,
\[\|A\|_{2} \leq \gamma \leftrightarrow A^{\prime} A \leq \gamma^{2} I.\nonumber\]