Skip to main content
Engineering LibreTexts

4.4: Relationship to Matrix Norms

  • Page ID
    24251
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The singular value decomposition can be used to compute the induced 2-norm of a matrix A.

    Theorem 4.2

    \[\begin{aligned}
    \|A\|_{2} & \triangleq \sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} \\
    &=\sigma_{1} \\
    &=\sigma_{\max }(A)
    \end{aligned}\ \tag{4.21}\]

    which tells us that the maximum amplification is given by the maximum singular value.

    Proof

    \[\begin{aligned}
    \sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} &=\sup _{x \neq 0} \frac{\left\|U \Sigma V^{\prime} x\right\|_{2}}{\|x\|_{2}} \\
    &=\sup _{x \neq 0} \frac{\left\|\Sigma V^{\prime} x\right\|_{2}}{\|x\|_{2}} \\
    &=\sup _{y \neq 0} \frac{\|\Sigma y\|_{2}}{\|V y\|_{2}} \\
    &=\sup _{y \neq 0} \frac{\left(\sum_{i=1}^{r} \sigma_{i}^{2}\left|y_{i}\right|^{2}\right)^{\frac{1}{2}}}{\left(\sum_{i=1}^{r}\left|y_{i}\right|^{2}\right)^{\frac{1}{2}}} \\
    & \leq \sigma_{1}
    \end{aligned}\nonumber\]

    For \(y=\left[\begin{array}{lll}
    1 & 0 & \cdots & 0
    \end{array}\right]^{T},\|\Sigma y\|_{2}=\sigma_{1}\), and the supremum is attained. (Notice that this correponds to \(x = v_{1}\). Hence, \(Av_{1}=\sigma_{1}u_{1}.\)

    Another application of the singular value decomposition is in computing the minimal amplification a full rank matrix exerts on elements with 2-norm equal to 1.

    Theorem 4.3

    Given \(A \in C^{m \times n}\), suppose \(rank(A) = n\). Then

    \[\min _{\|x\|_{2}=1}\|A x\|_{2}=\sigma_{n}(A)\ \tag{4.22}\]

    Note that if \(rank(A) < n\), then there is an \(x\) such that the minimum is zero (rewrite \(A\) in terms of its SVD to see this).

    Proof

    For any \(\|x\|_{2}=1\),

    \[\begin{aligned}
    \|A x\|_{2} &=\left\|U \Sigma V^{\prime} x\right\|_{2} \\
    &=\left\|\Sigma V^{\prime} x\right\|_{2} \quad \text { (invariant under multiplication by unitary matrices) } \\
    &=\|\Sigma y\|_{2}
    \end{aligned}\nonumber\]

    Screen Shot 2020-07-06 at 7.10.48 PM.png

    Figure \(\PageIndex{1}\): Graphical depiction of the mapping involving A^{2 \times 2}\). Note that \(Av_{1} = \sigma_{1} u_{1}\) and that \(Av_{2} = \sigma_{2} u_{2}\).

    for \(y = V^{\prime}x\). Now

    \[\begin{aligned}
    \|\Sigma y\|_{2} &=\left(\sum_{i=1}^{n}\left|\sigma_{i} y_{i}\right|^{2}\right)^{\frac{1}{2}} \\
    & \geq \sigma_{n}
    \end{aligned}\nonumber\]

    Note that the minimum is achieved for \(y=\left[\begin{array}{llll}
    0 & 0 & \cdots & 0 &1
    \end{array}\right]^{T}\); thus the proof is complete.

    The Frobenius norm can also be expressed quite simply in terms of the singular values. We leave you to verify that

    \[\begin{aligned}
    \|A\|_{F} & \triangleq\left(\sum_{j=1}^{n} \sum_{i=1}^{m}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} \\
    &=\left(\operatorname{trace}\left(A^{\prime} A\right)\right)^{\frac{1}{2}} \\
    &=\left(\sum_{i=1}^{r} \sigma_{i}^{2}\right)^{\frac{1}{2}}
    \end{aligned}\ \tag{4.23}\]

    Example 4.4 Matrix Inequality

    We say \(A \leq B\), two square matrices, if

    \[x^{\prime} A x \leq x^{\prime} B x \quad \text { for all } x \neq 0\nonumber\]

    It follows that for any matrix A, not necessarily square,

    \[\|A\|_{2} \leq \gamma \leftrightarrow A^{\prime} A \leq \gamma^{2} I.\nonumber\]


    This page titled 4.4: Relationship to Matrix Norms is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mohammed Dahleh, Munther A. Dahleh, and George Verghese (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.