Skip to main content
Engineering LibreTexts

5.1: Additive Perturbation

  • Page ID
    24256
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Theorem 5.1

    Suppose \(A \in C^{m \times n}\) has full column \(rank (= n)\). Then

    \[\min _{\Delta \in \mathbb{C}^{m \times n}}\left\{\|\Delta\|_{2} \mid A+\Delta \text { has rank }<n\right\}=\sigma_{n}(A)\ \tag{5.1}\]

    Proof

    Suppose \(A + \Delta\) has rank \(< n\). Then there exists \(x \neq 0\) such that \(\|x\|_{2}=1\) and

    \[(A+ \Delta)x=0\nonumber\]

    Since \(\Delta x = -Ax\),

    \[\begin{aligned}
    \|\Delta x\|_{2} &=\|A x\|_{2} \\
    & \geq \sigma_{n}(A)
    \end{aligned} \ \tag{5.2}\]

    From the properties of induced norms (see Section 3.1), we also know that

    \[\|\Delta\|_{2}\|x\|_{2} \geq\|\Delta x\|_{2}\nonumber\]

    Using Equation (24.3) and the fact that \(\|x\|_{2}=1\), we arrive at the following:

    \[\begin{aligned}
    \|\Delta\|_{2} &=\|\Delta x\|_{2} \\
    & \geq \sigma_{n}(A)
    \end{aligned} \ \tag{5.3}\]

    To complete the proof, we must show that the lower bound from Equation (5.3) can be achieved. Thus, we must construct a \(\Delta\) so that \(A + \Delta\) has rank \(<n\) and \(\|\Delta\|_{2}=\sigma_{n}(A)\); such a \(\Delta\) will be a minimizing solution. For this, choose

    \[\Delta=-\sigma_{n} u_{n} v_{n}^{\prime}\nonumber\]

    where \(u_{n}\), \(v_{n}\) are the left and right singular vectors associated with the smallest singular value \(\sigma_{n}\) of \(A\). Notice that \(<n\) and \(\|\Delta\|_{2}=\sigma_{n}(A)\). This choice yields

    \[\begin{aligned}
    (A+\Delta) v_{n} &=\sigma_{n} u_{n}-\sigma_{n} u_{n} v_{n}^{*} v_{n} \\
    &=\sigma_{n} u_{n}-\sigma_{n} u_{n} \\
    &=0
    \end{aligned}\nonumber\]

    That is, \(A + \Delta\) has rank \(< n\). This completes the proof.


    This page titled 5.1: Additive Perturbation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mohammed Dahleh, Munther A. Dahleh, and George Verghese (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.